ELECTROSTATICS

- Coulomb's law: $F=\frac{k q_{1} q_{2}}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$
\square Relative permittivity or dielectric constant :

$$
\varepsilon_{r} \text { or } K=\frac{\varepsilon}{\varepsilon_{0}}
$$

- Linear charge density: $\lambda=\frac{\text { charge }}{\text { length }}$
- Surface charge density: $\sigma=\frac{\text { charge }}{\text { area }}$
- Volume charge density: $\rho=\frac{\text { charge }}{\text { volume }}$
- Electric field intensity at a point at a distant r from a point charge q is $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$
- Electric dipole moment, $|\vec{p}|=q 2 a$
- Electric field intensity on axial line (end on position) of the electric dipole :
- At a point r from the centre of the electric dipole, $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}}$
- At very large distance i.e., $(r \gg a)$,

$$
\mathrm{E}=\frac{2 p}{4 \pi \varepsilon_{0} r^{3}}
$$

- Electric field intensity on equatorial line (board on position) of electric dipole
- At the point at a distance r from the centre of electric dipole,

$$
\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{\left(r^{2}+a^{2}\right)^{3 / 2}}
$$

- At very large distance i.e. $r \gg a$,

$$
\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}}
$$

- Electric field intensity at any point due to an electric dipole, $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}} \sqrt{1+3 \cos ^{2} \theta}$
\square Electric field intensity due to a charged ring
- At a point on its axis at a distance r from its centre, $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q r}{\left(r^{2}+a^{2}\right)^{3 / 2}}$
- At very large distance i.e. $\mathrm{r} \gg \mathrm{a}$,

$$
\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

- Torque on an electric dipole placed in a uniform electric field, $\vec{\tau}=\vec{p} \times \vec{E}$ or $\tau=p E \sin \theta$
- Potential energy of an electric dipole in a uniform electric field is

$$
u=p E\left(\cos \theta_{2}-\cos \theta_{1}\right)
$$

where θ_{1} and θ_{2} are initial angle and final angle between \vec{p} and \vec{E}.

- Electric flux, $\phi=\vec{E} \cdot d \vec{S}$
- Gauss's law : $\oint=\vec{E} \cdot d \vec{S}=\frac{q}{\varepsilon_{0}}$
- Electric field due to a uniformly charged thin spherical shell of uniform surface charge density σ and radius R at a point distance r from the centre of the shell is givedn as follows :
- At a point outside the shell i.e., $r>R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

- At a point on the shell i.e., $r=R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{2}}
$$

- At point inside the shell i.e., $r<R$

$$
E=0
$$

where $q=4 \pi R^{2} \sigma$

- Electric field due to a rion conducting solid sphere of un orm volume charge density p and radius R at a point distant r form the centre of the sphere is given as follows :
- At a point outside the sphere i.e., $r>R$

$$
\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

- At a point outside the surface of the sphere i.e., $r=R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{2}}
$$

- At a point inside the sphere i.e., $r<R$

$$
\begin{aligned}
& \qquad \begin{aligned}
E & =\frac{\rho r}{3 \varepsilon_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q r}{R_{3}} \\
\text { Where } \quad q & =\frac{4}{3} \pi R^{3} \rho
\end{aligned} \$ l
\end{aligned}
$$

- Electric feld due to a thin non conducting infintite sheet of charge with uniform surface charge denity σ is

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

- Electric feld between two infinite thin plane parallel sheets of uniform surface charge density σ and $-\sigma$ is

$$
E=\frac{\sigma}{\varepsilon_{0}}
$$

- Electric potential, $V=\frac{W}{q}$
- Electric potential at a point distance r from a point charge q is

$$
V=\frac{q}{4 \pi \varepsilon_{0} r}
$$

- The electric potential at a point due an electic dipole

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p \cos \theta}{r^{2}}
$$

- When the point lies on the axial line of dipole i.e., $r \theta=0^{\circ}$.

$$
V=\frac{p}{4 \pi_{0} r^{2}}
$$

- When the point on the equatorial line of the dipole, i.e., $\theta=90^{\circ}$.

$$
\mathrm{V}=0
$$

- Electric potential due to a uniformly charged spherical shell of uniform surface surface charge density σ and radius R at a distance r from the centre of the shell is given as follows:
o At a point outside the shell i.e., $r>R$

$$
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

o At a point on the shell i.e., $r=R$

$$
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

O At a point inside the shell i.e., $r<R$

$$
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

- Electric potential due to a non- conducting solid sphere of uniform volume charge senity p and radius R at a sistance r from the sphere is given as follows
- At a point outside the sphere i.e., $r>R$

$$
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

- At a point on the sphere i.e., $r=R$

$$
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

o At a point inside the sphere i.e., $r<R$

$$
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q\left(3 R^{2}-r^{2}\right)}{2 R^{3}}
$$

Relationship between \vec{E} and \vec{V}

$$
\vec{E}=-\vec{\nabla} V
$$

where

$$
\vec{\nabla}=\left(\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}\right]
$$

- Negative sign shows that the direction of \vec{E} is the direction of detential.
- Electric potential energy of a system of two point charges is

$$
u=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}
$$

- Electric feld at the surface of a charged conductor

$$
\vec{E}=\frac{\sigma}{\varepsilon} n
$$

- Capacitance, $C=\frac{Q}{V}$
- Capacitance of a spherical conductor of radius R is

$$
C=4 \pi \varepsilon_{0} R
$$

- Capacitance of an air filled parallel plate capacitor

$$
C=\frac{\varepsilon_{0} A}{d}
$$

- Capacitance of an air filled spherical capacitor

$$
C=4 \pi \varepsilon_{0} \frac{a b}{b-a}
$$

- Capacitance of an air filled spherical capacitor

$$
C=\frac{2 \pi \varepsilon_{0} L}{\operatorname{In}\left(\frac{b}{a}\right)}
$$

- Capacitance of a parallel plate capacitor with a dielectric slab of dielectric constant K, completely filled between the capacitor is given by

$$
C=\frac{K \varepsilon_{0} A}{d}
$$

- When a dielectric slab of thickness t and dielectric constant K is introduced between the plate capacitor is given by

$$
C=\frac{\varepsilon_{0} A}{d-t\left(1-\frac{1}{K}\right)}
$$

- When a metallic conductor of thickness t is introduced between the plates, then capacitor is given by

$$
C=\frac{\varepsilon_{0} A}{d-t}
$$

- Capacitors in series :

$$
\frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots .+\frac{1}{C_{n}}
$$

- Capacitors in series :

$$
\frac{1}{C p}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots . .+\frac{1}{C_{n}}
$$

- Energy stored in a capacitor :

$$
u=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C}
$$

Energy density: $u=\frac{1}{2} \varepsilon_{0} E^{2}$

- When two capacitors vharged to different potentials are connected by a condicting wire, the common potential, $V=\frac{\text { total }}{\text { total }} \frac{\text { charg } e}{\text { capacity }}=\frac{q_{1}+q_{2}}{C_{1}+C_{2}}=\frac{C_{1} V_{2}+C_{2} V_{2}}{2\left(C_{1}+C_{2}\right)}$
- Energy lost in the process,

$$
u_{1}-u_{2}=\frac{C_{1} C_{2}\left(V_{1}-V_{2}\right)^{2}}{2\left(C_{1}+C_{2}\right)}
$$

CURRENT ELECTRICITY

Current, $I=\frac{q}{t}$

- Current densitu, $J=\frac{I}{A}$
- Drift velocity of electrons is given by

$$
\vec{v}_{d}=-\frac{e \vec{E}}{m} \tau 2
$$

- Negative sign shows that deift velocity of electrons is in a direction opposite to that of the extemal electroc feld.
- Relationship between current and velocity

$$
I=n A e v_{d}
$$

- Relationship between current density and drift velocity

$$
\begin{array}{llrl}
& I & =n e v_{4} \\
\text { O Ohm's law : } & V & =R I \\
\text { Mobility, } & u & =\frac{\left|v_{d}\right|}{E}=\frac{q E \tau / m}{E}=\frac{q \tau}{m}
\end{array}
$$

- Resistance, $R=\frac{V}{I}$
- Conductance, $G=\frac{1}{R}$
- The resistance of a conductior is

$$
\mathrm{R}=\frac{m}{n e^{2} \tau} \frac{1}{A}=\rho \frac{1}{A} \text { where }=\frac{m}{n e^{2} \tau}
$$

- Condictibvity

$$
\sigma=\frac{1}{\rho}=\frac{n e^{2} \tau}{m}=n e \mu\left[a s \mu=\frac{v_{4}}{E}=\frac{e \tau}{m}\right]
$$

- If the conductor is in the form of wire of length / and a radius r, then its resistance is

$$
\mathrm{R}=\frac{\rho i}{\pi r^{2}}
$$

- If the conductor has mass m, volume V and density d , then its resistance R is

$$
\mathrm{R}=\frac{\rho l}{A}=\frac{\rho l^{2}}{A l}=\frac{\rho l^{2}}{V}=\frac{\rho l^{2} d}{m}
$$

- A the cylindrical tube of length / has inner and outer rafii r_{1} and r_{2} respectively. the resistance between its end faces is

$$
\mathrm{R}=\frac{\rho l}{\pi\left(r_{2}^{2}-r_{2}^{1}\right)}
$$

\square Relationship between J, σ and E

$$
J=\sigma E
$$

- The resistance of a condictor at temperature $t^{0} \mathrm{C}$ is given by

$$
R_{1}=R_{0}\left(1+\alpha t+\beta t^{2}\right)
$$

\square If $R_{t 2}$ and $R_{t 1}$ are resistances of the same conductor at temperatures $t_{1}^{0} C$ and $t_{2}^{0} C$ then

$$
R_{t 2}=R_{t 1}\left[1+\alpha\left(t_{2}-t_{1}\right)\right]
$$

- Resistors in series:

$$
\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}
$$

- Resistors in parallel:

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

- Relationship between ε, V and r

$$
r=R\left(\frac{\varepsilon}{V}-1\right)
$$

where ε emf of a cell, r internal resistance and is external resistance.

- Grouping of n cells in series

$$
\begin{aligned}
& \varepsilon_{e q}=\varepsilon_{1}+\varepsilon_{2}+\ldots . \varepsilon_{n} \\
& r_{e q}=r_{1}+r_{2}+\ldots . r_{n}
\end{aligned}
$$

\square Grouping of n cells in parallel

$$
\varepsilon_{e q}=\varepsilon, r_{e q}+\frac{r}{n}
$$

- Wheatstone's bridge,

$$
\frac{P}{Q}=\frac{R}{S}
$$

- Metre bridge or slide metre bridge,

The unknown resistance,

$$
R=\frac{S I}{100-1}
$$

- Cmparison of emfs of two cells by using popotentiometer,

$$
\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{I_{1}}{I_{2}}
$$

- Determination of internal resistance of a cell by potentiometer,

$$
\mathrm{r}=\left(\frac{l_{1}-l_{2}}{l_{2}}\right) R
$$

- Electric power, $P=\frac{\text { electric workd done }}{\text { time taken }}$
\square Electric energy $\quad=\mathrm{Pt}=\mathrm{Vlt}=\frac{V^{2} t}{R}$

$$
\mathrm{P}=\mathrm{VI}=I^{2} R=\frac{V^{2}}{R}
$$

MAGNETI CEFFCT OF CURRENT AND MAGNETISM

- Biot Savart's law

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{l d l \sin \theta}{r^{2}} \text { or } d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{(d \vec{l} \times \vec{r})}{r^{3}}
$$

- The magnetic feld B at a point due to a straight wire of finite length carrying current l at a perpedicular distance r is

$$
B=\frac{\mu_{0} I}{4 \pi r}[\sin \alpha+\sin \beta]
$$

- The magnetic field at cetre of a circulr coil of radius a carrying current I is

$$
B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi I}{a} \frac{\mu_{0} I}{2 a}
$$

If the circular coil consists of N turns, then

$$
B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi N I}{a} \frac{\mu_{0} N I}{2 a}
$$

- The magnetic field at a point on the axis of the ciroular current carrying coil is

$$
B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi N I a^{2}}{\left(a^{2}+x^{2}\right) 3 / 2}
$$

- Magnetic field at the centre die to current carruing circular arc

$$
\mathrm{B}=\frac{\mu_{0} I \phi}{4 \pi}
$$

- Ampere's circuital law :

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I
$$

- Magnetic field due to an infinitely long straight solid cylindrical wire of radius a, carrying current I
- Magnetic field at a point outside the wire
i.e. $(r>a)$ is

$$
\mathrm{B}=\frac{\mu_{0} I}{2 \pi r}
$$

- Magnetic field at a point outside the wire i.e. $(r>a)$ is
- Magnetic field at a point outside the wire i.e. $(r=a)$ is
- Force on a charged particle in a uniform electric field, $\vec{F}=q \vec{E}$
- Force on a charged particle in a uniform eletric field, $\vec{F}=q(\vec{v} \times \vec{B})$ or $F=q v B \sin \theta$
\square Motion of a charged particle in a uniform magnetic field
- Radius of circular path is

$$
\mathrm{R}=\frac{m v}{B q}=\sqrt{\frac{2 m K}{q^{B}}}
$$

- Time period of revolution is

$$
\mathrm{T}=\frac{2 \pi R}{v}=\frac{2 \pi m}{q \mathrm{~B}}
$$

- The frequency is, $v=\frac{1}{T}=\frac{q B}{2 \pi m}$

O The angular frequency is $\omega=2 \pi v=\frac{q^{B}}{m}$

- Cyclotron frequency, $v=\frac{B q}{2 \pi m}$
- Force on a current carrying conductor in a uniform magnetic field

$$
\vec{F}=I(\vec{I} \times \vec{B}) \text { or } F=I I B \sin \theta
$$

\square When two parallel condictors separated separated by a distance r carry currents I1 and I2 the magnetic field of one will exert a force on the other. The force per unit length on eithr conducdtor is

$$
f=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1} I_{2}}{r}
$$

- The force of attraction or repulsion acting on each conductor of length I due to currents in two parallel conductor is

$$
F=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1} I_{2}}{r} I
$$

- When two charges q1 and q2 respectively moving with velocities v_{1} and v_{2} are at a distance r apart, then the force acting between them is

$$
F=\frac{\mu_{0}}{4 \pi} \frac{q_{1}}{q_{1}} \frac{q_{2}}{r^{2}} \frac{v_{1} v_{2}}{}
$$

- Torque on a current carrying coil placed in a uniform magnetic field

$$
\begin{aligned}
& \tau=\mathrm{NIAB} \sin \\
& \theta=\mathrm{MB} \sin \theta
\end{aligned}
$$

- If a is the angle between plane of the coil and the magnetic field, then torque on the coil is

$$
\tau=\mathrm{NIAB} \operatorname{cas} \alpha=\mathrm{MB} \operatorname{coa} \alpha
$$

- Workdone in rotating the coil through an angle θ from the field direction is

$$
\mathrm{W}=\mathrm{MB}(1-\cos \theta)
$$

- Potential energy of a magnetic dipole

$$
U=-\vec{M} \cdot \vec{B}=-M B \cos \theta
$$

\square An electron revolving around the central nucleus in an stom has a magnetic moment it is given by

$$
\vec{\mu}_{L}=\frac{e}{2 m} \vec{L}
$$

- Magnetic dipole moment

$$
\vec{M}=m(2 \vec{l})
$$

- The magnetic field due to a ber magnet at any point on the axial line (end on position) is

$$
B_{\text {axial }}=\frac{\mu_{0}}{4 \pi} \frac{2 M r}{\left(r^{2}-l^{2}\right)^{2}}
$$

For short magnet $l^{2} \ll r^{2}$
The direction of $\mathrm{B}_{\text {axial }}$ is along SN.

- The magnetic field due to a bar magnet at any point on the equatorial line (board-side on position) of the ber magnet is

$$
B_{\text {equakuvlal }}=\frac{\mu_{0} M}{4 \pi\left(r^{2}+l^{2}\right)^{3 / 2}}
$$

For short magnet $l^{2} \ll r^{2}$

$$
B_{\text {equakuvlal }}=\frac{\mu_{0} M}{4 \pi r^{3}}
$$

The direction of $B_{\text {axial }}$ is parallel to NS.

- In moving coil galvanmeter the current I passing through the galvanometer is directy proportional to its deflection (θ)

$$
I \infty \theta o r, I=G \theta
$$

where $\mathrm{G}=\frac{k}{N A B}=$ galvanometer constant

- Current sensitivity : $I_{s}=\frac{\theta}{I}=\frac{N A B}{k}$
- Voltage sensitivity : $V_{s}=\frac{\theta}{V}=\frac{\theta}{I R}=\frac{N A B}{k R}$
- Conversion of galvanometer into ammeter

$$
s=\left(\frac{I_{8}}{I-I_{8}}\right) G
$$

- Conversion of galvanometer into voltmeter

$$
\mathrm{R}=\frac{V}{I_{8}}-G
$$

- In order to increase the range of voltmeter n times the value of resistance to be connected in series with galvaometer is $R=(n-1) G$.
- When a bar magnet of dipole momet \vec{M} is placed in a uniform magnetic field \vec{B}
- the force on it is Zero
- the torque on it is $\vec{M} \times \vec{B}$
- The potential energy is $\vec{M} \cdot \vec{B}$ where we choose the Zero of energy at the orientation when \vec{M} is perpendicular to \vec{B}
- Gauss's law for magnetism

$$
\oint=\sum_{\substack{\text { all area } \\ \text { elements }\\}} \vec{B} \cdot \Delta \vec{S}=0
$$

- Horizontal component of earth magnetic field

$$
B_{H}=\mathrm{B} \cos \delta
$$

- Vertical component of earth's magnetic field

$$
\begin{gathered}
B_{v}=\operatorname{Bsin} \delta \\
B=\sqrt{B H^{2}+B_{v}{ }^{2}} \text { and } \tan \delta=\frac{B_{V}}{B_{H}}
\end{gathered}
$$

\square The relationship between magnetic (B) and magnetic intensity (H) is

$$
\mathrm{B}=\mu \mathrm{H}
$$

- Intensity of magnetisation

$$
I=\frac{\text { Magnetic moment }}{\text { Volume }}=\frac{M}{V}
$$

- Magnetic susceptibility

$$
\underline{\chi_{m}}=\frac{I}{H}
$$

- Magnetic permeabitity

$$
\mu=\frac{B}{H}
$$

- Relative permeabitity

$$
\mu_{r}=\frac{\mu}{\mu_{0}}
$$

\square Relationhip between magnetic permeability and susceptibility

$$
\mu_{r}=1+\chi_{m} \text { with } \mu_{r}=\frac{\mu}{\mu_{0}}
$$

- Curie's law: $\chi_{m}=\frac{C}{T}$
- Curie Weiss law : $\chi_{m}=\frac{C}{T-T_{c}}\left(T>T_{c}\right)$

ELECTROMAGNETIC INDUCTION

- Magnetic flix

$$
\phi=\vec{B} \cdot \vec{A}=B A \cos \theta
$$

- Faraday's law of electromgnetic induction

$$
\varepsilon=-\frac{d \phi}{d t}
$$

- When a conducting rod of length I, moves with a velocity v perpendicular to a uniform magnetic field B, the induced emf across its ends is

$$
\varepsilon=B l v
$$

this is known as motional emf.

- When a conducting rod of length I, is rotated perpendicular to a uniform magnetic fild B, then induced emf between the ends of the rod is

$$
\begin{aligned}
& |\varepsilon|=\frac{B \omega l^{2}}{2}=\frac{B(2 \pi v) l^{2}}{2} \\
& |\varepsilon|=B v\left(\pi l^{2}\right)=B v A
\end{aligned}
$$

- When a Current I flows through a coil and ϕ is the magnetic flux limked with the coil, then

$$
\phi \propto I \text { or } \phi=L I
$$

- The self induced emf is

$$
\varepsilon=-\frac{d \phi}{d t}=-L \frac{d l}{d t}
$$

- self inductance of a circular coil is

$$
\mathrm{L}=\frac{\mu_{0} N^{2} \pi R}{2}
$$

\square Let I_{p} be the current flowing through primary coil at any instant. If ϕ_{s} is the flux linked with secondary coil then

$$
\phi_{S} \propto I_{P} \text { or } \phi_{S} \propto M I_{P}
$$

Where M is the coefficient of mutual inductance. The emf induced in the secondary coil is given by

$$
\varepsilon_{s}=-M \frac{d l_{p}}{d t}
$$

where M is the coefficient of mutual inductance.
\square Coefficient of coupling (K):

$$
K=\frac{M}{\sqrt{L_{1}} L_{2}}
$$

- the coefficient of mutual inductance of two long co-axial solenoifs, each og length I, area of cross section A, wound on air core is

$$
\mathrm{M}=\frac{\mu_{0} N_{1} N_{2} A}{I}
$$

- Energy stored in an inductor

$$
\mathrm{u}=\frac{1}{2} L I^{2}
$$

- During the growth of current in a LR circuit is

$$
I_{0}\left(1-e^{R t / L}\right)=\left(1-e^{-t / \tau}\right)
$$

where I_{0} is the maximum value of current, $\tau=1 / \mathrm{R}=$ time constant of LR circuit.
\square During the decay of current in a LR circuit is

$$
\mathrm{I}=I_{0}\left(1-e^{R t / L}\right)=I_{0} e^{-t / \tau}
$$

\square During charging of capacitor through resistor

$$
\mathrm{q}=9_{0}\left(1-e^{t / R C}\right)=q_{0}\left(1-e^{-t / \tau}\right.
$$

where q_{0} is the maximum value of charge. $\tau=\mathrm{RC}$ is the time constant of CR circuit.
\square Dueing charging of capacitor through resistor $\mathrm{q}=q_{0} e^{-t / R C}=q_{0} e^{-t \lambda}$

ALTERNATING CURRENT

- Alternating current can be represented by a sine curve or a cosine curve
$\mathrm{I}=\mathrm{I}_{0} \sin \omega \mathrm{t}$ or $\mathrm{I}=\mathrm{I}_{0} \operatorname{cis} \omega \mathrm{t}$

$$
\text { where } \quad \omega=\frac{2 \pi}{T}=2 \pi
$$

\square Mean or average value of alternating current or voltage over one complete cycle
I_{m} or \bar{I} or $I_{m}=\frac{\int_{0}^{t} I_{0} \sin d t}{\int_{0}^{r} d t}=0$
V_{m} or \bar{V} or $V_{a v}=\frac{\int_{0}^{T} V_{0} \sin d t}{\int_{0}^{T} d t}=0$

- Average value of alternating current for second cycle is

$$
I_{a v}=\frac{\int_{0}^{T / 2} V_{0} \sin \omega d t}{\int_{0}^{T / 2} d t}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

Similarly, for alternating voltage, the average value over second half cycle is

$$
\operatorname{Vav}=\frac{\int_{0}^{T / 2} V_{0} \sin \omega d t}{\int_{0}^{T / 2} d t}=\frac{2 V_{0}}{\pi}=0.637 V_{0}
$$

\square Average value of alternating current for second cycle is

$$
I_{a v}=\frac{\int_{T / 2}^{T} I_{0} \sin \omega d t}{\int_{T / 2}^{T} d t}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

Similarly, for alternating voltage, the average value over second half cycle is

$$
\operatorname{Vav}=\frac{\int_{T / 2}^{T} V_{0} \sin \omega d t}{\int_{T / 2}^{T} d t}=\frac{2 V_{0}}{\pi}=0.637 V_{0}
$$

- Mean value or a average value of altrenating current over any half cycle

$$
\text { Iav }=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

similarly, for alternating voltage

$$
\operatorname{Vav}=\frac{2 V_{0}}{\pi}=0.637 V_{0}
$$

- Root mean square rms value of alternating current

$$
I_{r m s} \text { or } I_{v}=\frac{1_{0}}{\sqrt{2}}=0.707 I_{0}
$$

similarly, for alternating voltage

$$
\mathrm{V}_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}=0.707 \mathrm{~V}_{0}
$$

- Form factor $=\frac{I_{r m s}}{I_{a v}}$
- Inductive reactance,

$$
\chi_{L}=\omega L=2 \pi v L
$$

- Capacitive reactance, $\mathrm{xc}=\frac{1 \omega}{\omega C}=\frac{1}{2 \pi v C}$
- The impedance of the series LCR circuit

$$
z=\sqrt{R^{2}+\left(X_{1}-X_{c}\right)^{2}}=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

\square Admittance $=\frac{1}{\text { impedance }}$ or $\mathrm{Y}=\frac{1}{Z}$

- Susceptance $=\frac{1}{\text { reactance }}$
- Inductiive susceptance $=\frac{1}{\text { inductive reactance }}$

$$
\text { or } S_{L}=\frac{1}{\mathrm{X}_{L}}=\frac{1}{\omega_{L}}
$$

- Capacitive susceptance

$$
=\frac{1}{\text { capacitive reactance }}
$$

or $S_{c}=\frac{1}{\mathrm{X}_{c}}=\frac{1}{1 / \omega C}=\omega C$
\square The resonant frequency is

$$
\begin{aligned}
& v_{r}=\frac{1}{2 \pi \sqrt{L C}} \\
& \omega_{r}=\frac{1}{\sqrt{L C}}
\end{aligned}
$$

- Quality factor,

$$
\begin{aligned}
& \mathrm{Q}=\frac{X_{L}}{R}=\frac{\omega_{r} L}{R} \\
& \mathrm{Q}=\frac{X_{c}}{R}=\frac{1}{\omega_{r} C R} \\
& \mathrm{Q}=\frac{1}{R}=\sqrt{\frac{L}{C}}
\end{aligned}
$$

- Average power,

$$
P_{a v}=P_{a v} V_{r m s} I_{r m s}=\frac{V_{0} I_{0}}{2} \cos \phi
$$

- Apparent power, $V_{\nu} V_{r m s} I_{r m s}=\frac{V_{0} I_{0}}{2}$
- Efficiency of a transformer,

$$
\eta=\frac{\text { output power }}{\text { input power }}=\frac{V_{s} I_{s}}{V_{p} I_{p}} \frac{\text { power }}{\text { power }}
$$

\square The efficiency of a dc motor is given by

$$
\eta=\frac{\text { back emf }}{\text { emf of battery }}
$$

ELECTROMAGNENTIC WAVES

- The displacement current is give by

$$
I_{D}=\varepsilon 0 \frac{d \phi_{E}}{d t}
$$

- Four Maxwell's equations are :
- Gauss's iaw for electrostatics

$$
\oint \bar{E} \cdot d \bar{S}=\frac{q}{\varepsilon_{0}}
$$

- Gauss's law for magnetism

$$
\oint \bar{B} \cdot d \bar{S}=0
$$

- Faraday's law of electromagnetic induction

$$
\oint \vec{E} \cdot d \vec{I}=\frac{d \phi_{B}}{d t}
$$

- Maxwell-Ampere's circuital law

$$
\oint \vec{B} \cdot d \vec{I}=\mu_{0}\left[1+\varepsilon_{0} \frac{d \phi_{E}}{d t}\right]
$$

\square The amplitudes of electeic and magnetic fields in free space, in electromagnetic waves are related by

$$
E_{0}=c B_{0} \text { or } B_{0}=\frac{E_{0}}{c}
$$

- The speed of electromagnetic wave in free space is

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

- The speed of electromagnetic wave in free space is

$$
v=\frac{1}{\sqrt{\mu \varepsilon}}
$$

- The energy density of the electric field is

$$
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

- The energy density of magnetic fields

$$
u_{B}=\frac{1}{2} \frac{B^{2}}{\mu_{0}}
$$

- Average energy density of the electric field is

$$
<\mathrm{u}_{\mathrm{E}}>=\frac{1}{4} \varepsilon E_{0}^{2}
$$

- Average energy density of the electric field is

$$
<\mathrm{u}_{\mathrm{B}}>=\frac{1}{4} \frac{B_{0}^{2}}{\mu_{0}}=\frac{1}{4} \varepsilon_{0} E_{0}^{2}
$$

- Average energy density of the electric field is

$$
<\mathrm{u}>=\frac{1}{2} \varepsilon_{0} E_{0}^{2}
$$

- Intensuty of electromagnetic wave

$$
\mathrm{I}=\left\langle\mathrm{u}>\mathrm{c}=\frac{1}{2} \varepsilon_{0} E_{0}^{2} c\right.
$$

- Momentum of electromagnetic wave
$p=\frac{u}{c}$ (complete absorption)
$p=\frac{2 u}{c}$ complete reflection
- The poynting vector is

$$
\vec{S}=\frac{1}{\mu_{0}}(\vec{E} \times \vec{B})
$$

RAY OPTICS

- When two plane mirrors are inclined at an angle θ and an object is placed between them, the number of images of an object are formed due to multiple reflections.

$n=\frac{360^{0}}{\theta}$	Position of object	Nimber of images
even odd	anywhere symmetric asymmetric	$n-1$ $n-1$ n

- If $\frac{360^{\circ}}{\theta}$ is a fraction, the number of images formed will be equal to its integral parrt.

If $\frac{360^{\circ}}{\theta}$ is a fraction, the number of images formed will be equal to its integral part.

- Sign convntions :
- All distances have to be measured from the pole of the mirror.
- Distances measured in the the direction of incident light are positive, and those mea sured in opposite direction aretaken as negetive.
- Heights measured upwards and normal to the principal axis of the mirror are taken as positive, while those measured down wards are taken as negetive.
- The focal length of a spherical mirror of radius R is given by

$$
f=\frac{R}{2}
$$

- Transverse or linear magnification

$$
m=\frac{\text { size of image }}{\text { size of object }}=\frac{v}{u}
$$

- Longitudinal magnification

$$
m_{L}=-\frac{d v}{d u}
$$

- Superficial magnification

$$
m_{s}=\frac{\text { area of image }}{\text { area of object }}=m^{2}
$$

- Mirrors formula : $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
- Newton's formula : $f_{2}=\chi y$
\square Laws of refraction $: \frac{\sin \mathrm{i}}{\sin \mathrm{r}}=1 \mu_{2}$
- Absolute refractive index

$$
1 \mu_{2}=\frac{\mu_{2}}{\mu_{1}}=\frac{\left(\frac{c}{v_{2}}\right)}{\left(\frac{c}{v_{1}}\right)}=\frac{v_{1}}{v_{2}}
$$

Lateral shift, $\mathrm{d}=\frac{\mathrm{t} \sin (i-r)}{\cos r}$
\square If there is an ink spot at the bottom of a glass slab, it appears to be raisedby a distance

$$
d=t-\frac{r}{\mu}=t\left(1 \frac{1}{\mu}\right)
$$

- Critical angle : It is that angle of incidence for which the angle of refraction becomes 90_{0} It is given by

$$
\sin \mathrm{i}_{\mathrm{C}}=\frac{1}{R_{\mu_{D}}}
$$

It the medium is air or vacuum, then

$$
\sin i_{c}=\frac{1}{\mu}
$$

\square A diver in weter at a depth d sees the world outside through a horizontal circle of radius

$$
\mathrm{r}=\mathrm{s} \tan \mathrm{i}_{\mathrm{c}}=\frac{d}{\sqrt{\mu^{2}-1}}
$$

\square When the object is situated in rarer medium, the relation between μ_{1} (refractive inbox of refracting surface) and R (radius of curvature) with the objecr and image distacrs is given by

$$
-\frac{\mu_{1}}{\mu}+\frac{\mu_{2}}{\mu}=\frac{\mu_{2}-\mu_{1}}{R}
$$

\square When the object is situated in denser medium, the relation between $\mu_{1}, \mu_{2}, \mathrm{R}$, u and $v \mathrm{cwn}$ be obtained by interchanging μ_{1} and μ_{2}. In that case, the relation becomes

$$
-\frac{\mu_{2}}{u}+\frac{\mu_{1}}{v}=\frac{\mu_{1}-\mu_{2}}{R} \text { or }-\frac{\mu_{2}}{v}+\frac{\mu_{2}}{u}=\frac{\mu_{2}-\mu_{2}}{R}
$$

- Lens maler's formula

$$
\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

- Thin lens formula $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
-Linear magnification

$$
m=\frac{\text { size of image }(\mathrm{I})}{\text { size of object }(\mathrm{O})}=\frac{v}{u}
$$

- Power of a lens

$$
P=\frac{1}{\text { focal length in metres }}
$$

- Combination of thin lenses in contact

$$
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}+\ldots \ldots
$$

- The total power of the combination is given by

$$
P=P_{1}+P_{2}+P_{3}+\ldots .
$$

\square The total megnification of the combination is given by $m=m_{1} \times m_{2} \times m_{3} \ldots$.

- When two thin lenses of focal lengths fr and placed coaxially and separated by a distance d, the focal length of a combination is give by

$$
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

- In terms of power $P_{1}+P_{2}-d P_{1} P_{2}$
\square The refractive index of the material of the prism is

$$
\mu=\frac{\frac{\sin \left[\left(A+\delta_{m}\right)\right]}{2}}{\sin \left(\frac{A}{2}\right)}
$$

where A is the angle of prism and δ_{m} is the angle of minimum deviation.

- Mean deviation, $\delta=\frac{\delta_{y}+\delta_{R}}{2}$
\square Diapersive power,

$$
\begin{aligned}
& \omega=\frac{\operatorname{angular} \text { dispersion }\left(\delta_{y}-\delta_{R}\right)}{\text { mean deviation }(\delta)} \\
& \omega=\frac{\mu_{y-} \mu_{R}}{(\mu-1)}
\end{aligned}
$$

where $\mu=\frac{\mu_{y_{-}} \mu_{R}}{2}$ mean refractive index
\square Simple microscope

- Magnifying power of simple microscope
$\mathrm{M}=\frac{\text { angle cubtended by inage at the eue }}{\text { angle subended by the object at the eye }}$
$=\frac{\tan \beta}{\tan \alpha}=\frac{\beta}{\alpha}$
- When the image is formed at infinity (fae point),

$$
\mathrm{M}=\frac{D}{f}
$$

- When the image is formed at the least distance of distinct vision D (near point),

$$
\mathrm{M}=1+\frac{D}{f}
$$

- Compound microscope
- Magnifying power of a compound micrscope

$$
\mathrm{M}=m_{0} \times m_{e}
$$

- When the final image is formed at infinity (normal adjustment),

$$
\mathrm{M}=\frac{v_{0}}{u_{0}}\left(\frac{D}{f_{e}}\right)
$$

Length of tube, $\mathrm{L}=v_{0}+f_{e}$

- When the final image is formed at least distance of distinct vision,

$$
\mathrm{M}=\frac{v_{0}}{u_{0}}\left(1+\frac{D}{f_{e}}\right)
$$

Where u_{0} and v_{0} represent the distance of object and image from the objective lens, f_{e} is focal length of an eye lens.
Length of the tube, $L=v_{0}+\left(\frac{f_{e} D}{f_{e}+D}\right)$
-Astronomical telescope (Refracting type) When the final image is formed at infinity

- Magnifying power, $M=\frac{f_{0}}{f_{e}}$
- Length of tube is $L=f_{0}+f_{e}$

When the image is formed at least distance of distinct vision

- Magnifying power, $M=\frac{f_{0}}{f_{e}}\left(1+\frac{f_{e}}{D}\right)$
- Length of tube is $L=f_{0}+\left(\frac{f_{e} D}{f_{e}+D}\right)$
- Reflecting type telescope
- Magnifying power, $M=\frac{f_{0}}{f_{e}}=\frac{(R / 2)}{f_{e}}$

WAVE OPTICS

- If a, b are the amplitudes of interfering waves due to two coherent sources and ϕ is constant phase difference between the two waves at any point P, then the resultant amplitude at P will be

$$
R=\sqrt{a^{2}+b^{2}+2 \mathrm{ab} \cos \phi}
$$

\square For constructive interference (i.e.formation of bright fringes)

- For $\mathrm{n}^{\text {th }}$ bright fringe,
path difference $=x_{n} \frac{d}{D}=n \lambda$
where $n=0$ for central bright fringe
$n=1$ for first bright fringe,
$n=2$ for second bright fringe and so on
$d=$ distance between the two slits
$D=$ distance of slits from the screen
$x_{n}=$ distance of $\mathrm{n}^{\text {th }}$ bright fringe from the centre.
$\therefore x_{n}=n \lambda \frac{D}{d}$
- For destructive interference (i.e. formation of dark fringes).
- For $n^{\text {th }}$ bright fringe,
path difference $=x_{n}=\frac{d}{D}=(2 n-1) \frac{\lambda}{2}$
where $\quad \mathrm{n}=1$ for first dark fringe,
$\mathrm{n}=2$ for $2^{\text {nd }}$ dark fringe and so on.
$\mathrm{X}_{\mathrm{n}}=$ distance of nth dark fringe from the centre

$$
\therefore x_{n}=(2 n-1) \frac{\lambda D}{2 d}
$$

- Fringe width, $\beta=\frac{\lambda D}{d}$
- Angular fringe width, $\theta=\frac{\beta}{D}=\frac{\lambda}{d}$
- If Wv W2are widths of slits, Iv I2 are intensities of lifht coming from two slits; a, b are amplitudes of light from these slits, then

$$
\begin{aligned}
& \frac{W_{1}}{W_{2}}=\frac{I_{1}}{I_{2}}=\frac{a^{2}}{b^{2}} \\
& \frac{I_{\max }}{I_{\min }}=\frac{(a+b)^{2}}{(a-b)^{2}}
\end{aligned}
$$

\square Fringe vidibility, $\mathrm{V}=\frac{I_{\max }-I_{\min }}{I_{\text {max }}+I_{\text {min }}}$

- When entire apparatus of Young's double slit experiment is innersed in a medium of refeactive index μ,then fringe width becomes

$$
\beta^{\prime}=\frac{\lambda D}{d}=\frac{\lambda D}{\mu d}=\frac{\beta}{\mu}
$$

\square When a thin transparent plate of thickness t and refractive index μ is placed in the path of one of the interfeing waves, fringe width remains unaffected but the entire pattern shifts by

$$
\Delta x=(\mu-1) t \frac{D}{d}=(\mu-1) t \frac{\beta}{\lambda}
$$

\square Diffraction due to a single slit

- Condition for $n^{\text {th }}$ secondary maximum is path difference $=a \sin \theta_{n}=(2 n+1) \frac{\lambda}{2}$
where $n=1,2,3, \ldots \ldots$
- Condition for $n^{\text {th }}$ secondary maximum is

Path difference $=a \sin \theta_{n}=n \lambda$
where $n=1,2,3, \ldots \ldots$.
width of secondary maxima or minima

$$
\beta=\frac{\lambda D}{a}=\frac{\lambda f}{a}
$$

where
$a=$ width of slit
$D=$ distance of scren from the slit
$f=$ focal length of lens for diffracted light
\square width of central maximum $=\frac{2 \lambda D}{a}=\frac{2 f \lambda}{a}$

- Angular fring width of cental maximum $=\frac{2 \lambda}{a}$
- Angular fring width of secondary maxima or minima $=\frac{\lambda}{a}$
- Fresnel distance,

$$
\mathrm{Z}_{\mathrm{F}}=\frac{a^{2}}{\lambda}
$$

- Resolving power of a microscope

$$
=\frac{1}{d}=\frac{2 \mu \sin \theta}{\lambda}
$$

- Resolving power of a

$$
=\frac{1}{d \theta}=\frac{D}{1.22 \lambda}
$$

- Laws of malus :

$$
\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \theta
$$

- Brewster's law : $\mu=\tan \mathrm{i}_{p}$

DUAL NATURE OF RADIATION AND MATTER

- Energy of a photon,

$$
\mathrm{E}=h v=\frac{h c}{\lambda}
$$

\square Momentum of photon is

$$
p=\frac{E}{c}=\frac{h v}{c}
$$

\square The moving mass of photon is

$$
m=\frac{E}{c^{2}}=\frac{h v}{c^{2}}
$$

- Stopping potential
- $\mathrm{K}_{\max }=e V_{0}=\frac{1}{2} m v_{\max }^{2}$
\square Einstein's photoelectric equation :
if a light of frequency v is incident on a photosensitive maximum having work function $\left(\phi_{0}\right)$, then maximum kinetic cnergy of the emitted electron is given as $\mathrm{K}_{\max }=h v-\phi_{0}$

$$
\text { for } v>v_{0} \text { or } e V=h v-\phi_{0}=h v-h v_{0}
$$

$$
e V_{0}=\mathrm{K}_{\max }=h c\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right)
$$

- The de Broglie wavelength associated with a moving particle,

$$
\lambda=\frac{h}{p}=\frac{h}{m v}
$$

- If the rest mass of a particle is m_{0} its de Broglie wavelength is given by

$$
\lambda=\frac{h\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}}{m_{0} v}
$$

o In terms of kinetic energy K, de Broglie wavelength is given by $\lambda=\frac{h}{\sqrt{2 m K}}$
o If a particleof charge q is accelerated through a potential difference V, its de Broglie wavelength is given by $\lambda=\frac{h}{\sqrt{2 m V}}$

For an electron, $\lambda=\left(\frac{150}{V}\right)^{1 / 2} 0$
o For a gas molecule of mass m at temperature T lelvin, its de Broglie wavelength is given by $\lambda \frac{h}{\sqrt{3 \mathrm{mkT}}}$, where k is the Boltzmann constant.

ATOMS AND NUCLEI

- Rutherford scattering formula

$$
\mathrm{N}(\theta)=\frac{\mathrm{N}_{i} n t Z^{2} e^{4}}{\left(8 \pi_{0}\right)^{2} r^{2} K^{2} \sin ^{4}(\theta / 2)}
$$

- The fraction of incident alpha particles scattered by an angle θ or greater

$$
\mathrm{f}=\pi n t\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0} k}\right)^{2} \cot ^{2} \frac{\theta}{2}
$$

- The scattering angle θ of the α particle and impact parameter b are related as

$$
\mathrm{b}=\frac{Z e^{2} \cos (\theta / 2)}{4 \pi \varepsilon_{0} K}
$$

- Distance of closest approach

$$
r_{0}=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} K}
$$

- Angular momentum of the electron in a stationary orbit is an integral multiple of $h / 2 \pi$.

$$
\text { i.e., } \quad \mathrm{L}=\frac{n h}{2 \pi} \text { or } m v r=\frac{n h}{2 \pi}
$$

- The frequency of a radiation

$$
v \frac{E_{2}-E_{1}}{h}
$$

- Bohr's formulae
- Radius of $\mathrm{n}^{\text {th }}$ orbit

$$
r_{n}=\frac{4 \pi \varepsilon_{0} n^{2} h^{2}}{4 \pi^{2} m Z e^{2}} ; r_{n}=\frac{0.53 n^{2}}{Z} \stackrel{0}{\mathrm{~A}}
$$

\square Velocity of electron in the $\mathrm{n}^{\text {th }}$ orbit

$$
v_{\mathrm{n}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z_{e^{2}}}{n h}=\frac{2.2 \times 10^{6} Z}{n} \mathrm{~ms}^{-1}
$$

o The kinetic energy of the electron in the $\mathrm{n}^{\text {th }}$ orbit

$$
\begin{aligned}
\mathrm{Kn} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{2 r_{n}}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{2 \pi^{2} m e^{4} Z^{2}}{n^{2} h^{2}} \\
& =\frac{13.6 Z^{2}}{n^{2}} e V
\end{aligned}
$$

- The potential energy of electron in $\mathrm{n}^{\text {th }}$ orbit
$u_{n}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Z e^{2}}{r_{n}}=-\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{4 \pi^{2} m e^{4} Z^{2}}{n^{2} h^{2}}$ $=-\frac{27.2 Z^{2}}{n^{2}} e . V$
- Total energy of electron in $n^{\text {th }}$ orbit

$$
\begin{aligned}
& E_{n}=u_{n}+k_{n}=-\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{2 \pi^{2} m e^{4} Z^{2}}{n^{2} h^{2}} \\
& =-\frac{13.6 Z^{2}}{n^{2}} e V
\end{aligned}
$$

- Frequency of electron in $n_{t h}$ orbit
$v_{n}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{4 \pi^{2} Z e^{4} m}{n^{3} h^{3}}=\frac{6.62 \times 10^{15} Z^{2}}{n^{3}} \mathrm{z}$
- Wavelength of radiation in the transition from
$n_{2} \rightarrow n_{1}$ is give by

$$
1 \frac{1}{\lambda}=R\left[\frac{1}{2^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

Where R is called Rydberg's constant.

$$
R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{2 \pi^{2} m e^{4}}{c h^{3}}=1.097 \times 10^{7} \mathrm{~m}^{-1}
$$

- Lyman series :

- Emission spectral lion from jigher energy levels $\left(\mathrm{n}_{2}=3,3, \ldots \infty\right)$ to first energy level ($\mathrm{n}_{1}=1$)
consitipn of electute Lyman series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

- Balmer series:

- Emission spectral lion from jigher energy levels $\left(\mathrm{n}_{2}=3,4, \ldots \infty\right)$ to first energy level ($\mathrm{n}_{1}=2$)
consitipn of electute Lyman series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{2^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

- Paschen series:

- Emission spectral lion from jigher energy levels $\left(n_{2}=4,5, \ldots . \infty\right)$ to first energy level ($\mathrm{n}_{1}=3$)
consitipn of electute Lyman series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{3^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

- Brackett series:

- Emission spectral lion from jigher energy levels $\left(n_{2}=5,6,7, \ldots \infty\right)$ to first energy level ($\mathrm{n}_{1}=4$)
consitipn Brackett series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{4^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

- Pfund series:

- Emission spectral lines corresponding to the transition of electron fron higher energy ($n 1=4$) constitute Braclett series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{5^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

- Number of spectral lines due to transition of electron from $\mathrm{n}^{\text {th }}$ orbit to lower orbit is electron $\mathrm{n}^{\text {th }}$ orbit to lower orbit is

$$
N=\frac{n(n-1)}{2}
$$

- Ionization potential $=\frac{13.6 Z^{2}}{n^{2}} V$
- Ionization potential $=\frac{13.6 Z^{2}}{n^{2}} V$
- Energy quantisation,

$$
\mathrm{E}_{\mathrm{n}}=\frac{n^{2} h^{2}}{8 m L^{2}} \text { where } \mathrm{n}=1,2,3, \ldots \ldots \ldots
$$

- Nuclear radius, $R=R_{0} A^{1 / 3}$

Where R_{0} is a constant and A is the mass number.
\square Nuclear density,

$$
\mathrm{P}=\frac{\text { nuclear mass }}{\text { volume of mucleus }}
$$

\square Mass defect is give by

$$
\Delta m=\left[Z m_{p}+(A-Z) m_{n}-m_{N}\right]
$$

- The binding energy of nucleus is given by

$$
E_{b}=\Delta m c^{2}=\left[Z m_{p}+(A-Z) m_{n}-m_{n}\right] c^{2}
$$

$$
\left[Z m_{p}+(A-Z) m_{N}-m_{N}\right] \times 931.49 \mathrm{MeV} / u
$$

- The binding energy per nucleon of a nucleus

$$
=\frac{E_{b}}{A}
$$

- Packing fraction

$$
=\frac{\text { mass cxcess }}{\text { mass number }}=\frac{M-A}{A}
$$

- Low of radioactive decay

$$
=\frac{D N}{d t}=\lambda N(t) N(t)=N_{0} e^{-\lambda t}
$$

- Half-life of a radioactive substance is given by

$$
T_{1 / 2}=\frac{\operatorname{In} 2}{\lambda}=\frac{0.693}{\lambda}
$$

- Mean life or average lift of a radioactive substance is given by

$$
\tau=\frac{T_{1 / 2}}{0.693}=1.44 T_{1 / 2}
$$

- Activity:

$$
\mathrm{R}=\frac{d N}{d t}
$$

- Activity law : $R(t)=R_{0} e^{\lambda \tau}$
where $R_{0}=\lambda N_{0}$ is the decay rate at $\mathrm{t}=0$ and $R=N \lambda$.
- Fraction of nuclei left undecayed after n half lives is

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{t / T / 2} \text { or } t=n T_{1 / 2}
$$

- Alpha decay: It is represented by

$$
\stackrel{A}{Z} \mathrm{X} \rightarrow \stackrel{A-4}{Z^{-2}-2 Y}+\stackrel{4}{2} \mathrm{He}
$$

- Beta decay: It is represented by

$$
{ }_{Z}^{A} X \rightarrow Z^{A}+1 Y+\bar{e}+\bar{v}
$$

- Gamma decay: It is represented by

$$
\stackrel{A}{Z} X \rightarrow \stackrel{A}{Z}+\lambda
$$

denotes the excited nuclear state.

\square Nuclear reaction :

- It is represented by

$$
A+a \rightarrow B+b+Q
$$

- Q value of nuclear reaction

$$
\mathrm{Q}=\left(m_{A}+m_{a}-m_{B}-m_{b}\right) c^{2}
$$

- Neutron represented factor (K)

$$
=\frac{\text { rate of production of neutrons }}{\text { rate of loss of neutrons }}
$$

SEMICONDUCTOR DEVIVES

- Forbidden energy gap

$$
E_{g}=h v=\frac{h c}{\lambda}
$$

- The intrinsic concentration ni varies with temperature T as

$$
n_{i}^{2}=A_{0} T^{3} e^{-E g K T}
$$

- The conductivity of the semiconductor is given by

$$
\sigma=\frac{1}{2}=e\left(n_{e} \mu_{h}\right)
$$

where μ_{e} and n_{h} are the electron and hole mobilities, μ_{e} and n_{h} are the electron and hole densities, e is the electronic charge.

- The conductivity of an intrinsic semiconductor is

$$
\sigma_{i}=n_{i e}\left(\mu_{e}+\mu_{h}\right)
$$

- The conductivity of n-type semiconductor is

$$
\sigma_{i}=e N_{d} \mu_{e}
$$

- The conductivity of n-type semiconductor is

$$
\sigma_{p}=e N_{a} \mu_{h}
$$

- The current in the junction diode is given by

$$
I=I_{a}\left(e^{e V / K T}-1\right)
$$

where $\mathrm{k}=$ Boltzmann constant, $\mathrm{I} 0=$ reverse saturation current.
In forward biasing, V is positive and low, $e^{e V K T} \gg 1$, then forward current,

$$
I_{f}=I_{0}\left(e^{e V K T}\right)
$$

In reverse biasing, V is negative and high $e^{e V K T} \lll 1$, low,then reverse current,

$$
I_{f}=I_{0}
$$

Dynamic resistance,

$$
r_{d}=\frac{\Delta V}{\Delta I}
$$

- Half wave rectifier:
- Peak value of current is

$$
I_{m}=\frac{V m}{r f+R_{L}}
$$

where R_{f} is the forward diode resistance, R_{L} is the load resistance and V_{m} is the peak value of the alternating voltage.

- rms value of current is

$$
L_{r m s}=\frac{I_{m}}{2}
$$

- dc value of current is

$$
I_{d c}=\frac{I_{m}}{\pi}
$$

- Peak inverse voltage is

$$
\text { P.I. } V=V_{m}
$$

- dc value of voltage is

$$
V_{d c}=I_{d c} R_{L}=\frac{I_{m}}{\pi} R_{L}
$$

- Full wave rectifier,
- Peak inverse voltage is

$$
I_{m}=\frac{V_{m}}{r_{f}+R_{L}}
$$

- dc value of current is

$$
I_{d c}=\frac{21_{m}}{\pi}
$$

- rms value of current is

$$
I_{r m s}=\frac{1_{m}}{\sqrt{2}}
$$

- Peak inverse voltage is

$$
\text { P.I.V }=2 V_{m}
$$

- dc value of voltage is

$$
V_{d c}=I_{d c}=\frac{2 I_{m}}{\pi} R_{L}
$$

- Ripple frequency,
$r=\frac{\text { rms value of the components of wave }}{\text { average or dc value }}$

$$
r=\sqrt{\left(\frac{I_{r m s}}{I_{d c}}\right)^{2}-1}
$$

- For half wave rectifier,

$$
\begin{aligned}
& I_{r m s}=\frac{I_{m}}{2}, I_{d c}=\frac{I_{m}}{\pi} \\
& r=\sqrt{\left(\frac{I_{m} / 2}{I_{m} / \pi}\right)^{2}-1}=1.21
\end{aligned}
$$

- For Full wave rectifier,

$$
I_{r m s}=\frac{I_{m}}{\sqrt{2}}, I_{d c}=\frac{2 I_{m}}{\pi}
$$

$$
r=\sqrt{\left(\frac{I_{m} / \sqrt{2}}{2 I_{m} / \pi}\right)^{2}-1}
$$

$$
=0.482
$$

- Rectification efficiency,

$$
\eta=\frac{\text { dc power delivered to load }}{\text { ac input power fransformer secondary }}
$$

- For half wave rectifier, - dc power delivered to the load is

$$
P_{d c}=I_{d c}^{2} R_{L}=\left(\frac{I_{m}}{\pi}\right)^{2} R_{L}
$$

- Inout ac power is

$$
P_{d c}=I_{r m s}^{2}\left(r_{f}+R_{L}\right)\left(\frac{I_{m}}{\pi}\right)^{2}\left(r_{f}+R_{L}\right)
$$

- Rectification efficiency,

$$
\eta=\frac{P_{d c}}{P_{a c}}=\frac{\left(I_{m} / \pi\right)^{2} R_{L}}{\left(I_{m} / 2\right)^{2}\left(r_{f}+R_{L}\right)} \times 100 \%
$$

\square For a full wave rectifier,

- dc power delivered to the load is

$$
P_{d c}=I_{d c}^{2} R_{L}=\left(\frac{2 I_{m}}{\pi}\right)^{2} R_{L}
$$

- Inout ac power is

$$
P_{d c}=I_{r m s}^{2}\left(r_{f}+R_{L}\right)\left(\frac{I_{m}}{\sqrt{2}}\right)^{2}\left(r_{f}+R_{L}\right)
$$

- Rectification efficiency,

$$
\begin{aligned}
\frac{P_{d c}}{P_{a c}} & =\frac{\left(2 I_{m} / \pi\right)^{2} R_{L}}{\left(I_{m} / \sqrt{2}\right)^{2}\left(r_{f}+R_{L}\right)} \times 100 \% \\
& =\frac{81.2}{1+r_{f} / R_{L}} \%
\end{aligned}
$$

- Form factor $=\frac{I_{r m s}}{I_{d c}}$
- For half wave rectifier,

$$
I_{r m s}=\frac{I_{m}}{2}, I_{d c}=\frac{I_{m}}{\pi}
$$

- Form factor $=\frac{I_{m} / 2}{I_{m} / \pi}=\frac{\pi}{2}=1.57$
- For Full wave rectifier,

$$
I_{r m s}=\frac{I_{m}}{\sqrt{2}}, I_{d c}=\frac{2 I_{m}}{\pi}
$$

Form factor $=I_{r m s}=\frac{I_{m} / \sqrt{2}}{2 I_{m} / \pi}=\frac{\pi}{2 \sqrt{2}}=1.11$

- Common emitter amplifier:
o dc current gain,

$$
\beta_{d c}=\frac{I_{c}}{I_{\mathrm{B}}}
$$

- ac current gain,

$$
\beta_{a c}=\frac{\Delta I_{c}}{\Delta I_{\mathrm{B}}}
$$

- Voltage gain,

$$
A_{v}=\frac{V_{0}}{V_{i}}=-\beta_{a c} \times \frac{R_{0}}{R_{i}}
$$

- Power gain,

$$
A p=\frac{\text { output power }\left(\mathrm{p}_{0}\right)}{\text { input power }\left(\mathrm{P}_{i}\right)}=\beta_{a c} \times A_{v}
$$

- Voltage gain,(in dB) $=20 \log _{10} \frac{V_{0}}{V_{i}}$
$=20 \log _{10} \mathrm{~A} v$
- Power gain $($ in dB $)=10 \log \frac{P_{0}}{P_{i}}$
- Common base amplifier:

O dc current gain, $\alpha_{d c}=\frac{I_{c}}{I_{E}}$
O ac current gain, $\alpha_{a c}=\left(\frac{\Delta I_{c}}{\Delta I_{E}}\right)$

O Voltage gain, $A_{p}=\frac{V_{0}}{V_{1}}=\alpha_{a c} \times \frac{R_{0}}{R_{1}}$

- Power gain

$$
A_{p}=\frac{\text { output power }\left(\mathrm{P}_{0}\right)}{\text { input power }\left(\mathrm{P}_{i}\right)}=\alpha_{a c} \times A_{v}
$$

- Relationship between α and β

$$
\beta=\frac{\alpha}{1-\alpha} ; \alpha=\frac{\beta}{1+\beta}
$$

The frequency of the oscillation of a $L C$
oscillator is $v=\frac{1}{2 \pi \sqrt{L C}}$

Name of gate	Symbol	Truth Table	Boolean expression
OR		$\begin{array}{ccc}\text { A } & \text { B } & \text { Y } \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}$	$\mathrm{Y}=\mathrm{A}+\mathrm{B}$
AND		$\begin{array}{ccc}\text { A } & \text { B } & \text { Y } \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}$	$Y=A . B$
NOT	A-	A Y 0 1 1 0	$\mathrm{Y}=\bar{A}$
NAND	${ }_{B}^{A} \leftrightharpoons \square-\square$	$\begin{array}{ccc} \text { A } & \text { B } & \text { Y } \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	$\mathrm{Y}=\overline{A \cdot B}$
NOR		$\begin{array}{ccc} \text { A } & \text { B } & \text { Y } \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$	$\mathrm{Y}=\overline{A+B}$
XOR		$\begin{array}{lll} \text { A } & \text { B } & \text { Y } \\ 0 & 0 & 0 \end{array}$	$\begin{aligned} & Y=A \cdot \\ & \bar{B}+\bar{A} \cdot B \end{aligned}$

XNOR		0 1 1 1 0 1 1 1 0 A B Y 0 0 1 0 1 0 1 0 0 1 1 1	$\begin{aligned} & Y=A \cdot \\ & B+\bar{A} \cdot \bar{B} \end{aligned}$

\square De morgan's theorems

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \cdot \bar{B} \\
& \overline{A \cdot B}=\bar{A}+\bar{B}
\end{aligned}
$$

- Boolean identities :

$A+B=B+A$	$A \cdot B=B \cdot A$
$A+(B+C)=(A+B)+C$	$A \cdot(B+C)=(A \cdot B) \cdot C$
$A+(B+C)=A \cdot B+A \cdot C$	$A+B \cdot C=(A+B)(A+C)$
$A+0+A$	$A \cdot 1=0$
$A+1+1$	$A \cdot 0=0$
$A+A+A$	$A \cdot A=A$
$A+\bar{A}=1$	$A \cdot \bar{A}=1$
$\overline{\bar{A}}=A$	$\overline{\bar{A}}=A$
$\overline{A+A}=\bar{A} \cdot \bar{B}$	$\overline{A \cdot A}=\bar{A}+\bar{B}$
$A+A \cdot B=A$	$A \cdot(A+B)=A$
$A+\bar{A} \cdot B=A+B$	$A \cdot(\bar{A}+B)=A \cdot B$

COMMUNICATION SYSTEM

- Critical frequency, $v_{c}=9\left(N_{\max }\right)^{1 / 2}$
where $N_{\text {max }}$ the maximum number density of electron per m^{3}.
- Maximum usable frequency

$$
M U F=\frac{v_{c}}{\cos i}=v_{c} \sec i
$$

where i is the angle between normal and the direction of incidence of waves.

- The slip distance is given by

$$
D_{k i p}=2 h \sqrt{\left(\frac{v_{0}}{v_{c}}\right)^{2}-1}
$$

where h is the height of reflecting later of atmosphere, $v_{0}=$ maximum frequency of elecreomagnetic waves used and v_{c} is the critical frequency for that lyer.

- If h is the transmitting antenna, then the distance to the horizon is given by

$$
\mathrm{d}=\sqrt{2 h R}
$$

where R is the raadius of the earth.
For TV signal,
Area covered $=\pi d^{2}=\pi h R$
Population covered $=$ population density \times area covered ce d_{m} between two antennas having heights h_{T} and h_{R} above the earth is given by

$$
d_{m}=\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}}
$$

Where h_{T} is the height of the transmitting antenna and h_{R} is thr height of the receiving antenna and R is the radius of the earth.

- The amplitude modulated signal is represented
as $c_{m}(t)=\left(A_{c}+A_{m} \sin \omega_{m} t\right) \sin \omega_{m} t$
where $\omega_{c}=2 \pi v_{c}$
$\omega_{m}=2 \pi v_{m}$
$\mu=\frac{A_{m}}{A_{c}}$ is the modulation index.
- The amplitude modulated signal contains three frequencies, viz. $v_{c} v_{c} v_{c}+v_{m}$ and $\left(v_{c}-v_{m}\right)$ the first ferquency is the carrier frequency. Thus, the process of modulation does not change the original carrier frequency but produces two new frequencies $v_{c}+v_{m}$ and v_{c} v_{m} which are known as sideand frequencies

$$
v_{S B}=v_{c} \pm v_{m}
$$

- Frequency of lower side band

$$
v_{L S B}=v C-v_{m}
$$

o Frequency of higher side band

$$
v_{U S B}=v_{\mathrm{c}}-v_{m}
$$

- Bandwidth of AM signal =

$$
v_{U S B}=-v_{U S B}==2 v_{m}
$$

- Average power per cycle in the carrier wave is

$$
P_{c}=\frac{A_{c}^{2}}{2 R}
$$

where R is the resistance

- Total power per cycle in the modulated wave

$$
P_{t}=P_{c}\left(1+\frac{\mu^{2}}{2}\right)
$$

- It I, is rms value of total modulated current and I_{c} is the rms value of unmodulated carrier current, then

$$
\frac{I_{t}}{I_{c}}=\sqrt{1+\frac{\mu^{2}}{2}}
$$

$v_{\text {max }}=v_{c}+\frac{k V_{m}}{2 \pi}$ and $v_{c}=v_{c}-\frac{k V_{m}}{2 \pi}$ etection of $A M$ wave, the essential condition is

$$
\frac{1}{v_{c}}=\ll R C
$$

- The instantaneous frequency of the frequency modulated wave is

$$
v=v_{c}+\frac{V_{m}}{2 \pi} \sin \omega_{m}^{t}
$$

where k is the proportionality condtant.

- The maximum and minimum values of the frequency is

$$
v_{\max }=v_{c}+\frac{k V_{m}}{2 \pi} a n d v_{c}=v_{c}-\frac{k V_{m}}{2 \pi}
$$

- Frequency deviation,

$$
\delta=v_{\max }-v_{c}-v_{\min }=\frac{k V_{m}}{2_{\pi}}
$$

UNITS AND MEASUREMENTS

- Physical quantity $=$ Numerical value \times unit
- Homogeneity Principle

Dimensions of [LHS] = Dimensions of [RHS]

- Mean absolute error

$$
\begin{aligned}
& \Delta a_{\text {mean }}=\frac{\left|\Delta a_{1}\right|+\Delta a_{2}\left|+\ldots+\Delta a_{n}\right|}{n} \\
& \left.\Delta a_{\text {mean }}=\frac{1}{n} \times \sum_{i=1}^{n} \Delta a_{i} \right\rvert\,
\end{aligned}
$$

- Arithmetic mean $a_{\text {mean }}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$

$$
a_{\text {mean }}=\frac{1}{n} \times \sum_{i=1}^{n} a_{i}
$$

- Relative error of fractional error

$$
=\frac{\text { mean absolute error }}{\text { mean value }}=\frac{\Delta a_{\text {mean }}}{a_{\text {mean }}}
$$

- Percentage error $\delta a=\frac{\Delta a_{\text {mean }}}{a_{\text {mean }}} \times 100 \%$
- If in a vernier callipers n VSD coincide with ($n-1$) MSD, then vernler constant or its least count is $V C=\left(1-\frac{n-1}{n}\right)$ (value or 1 MSD) or $\frac{1}{n}$ (value of MSD).
- Least count of screw gauge or spheromenter

$$
\begin{gathered}
=\frac{\text { Pitch }}{\text { Number of divisions on circular scale }} \text { and } \\
\text { Number of divisions moved on }
\end{gathered}
$$

Pitch $=\frac{\text { linear scale }}{\text { Number of rotations given }}$
$=$ Linear distance moved in one rotation.

- Random error $=\sqrt{n}$, where $n=$ number of events or $n=$ number of quantities.
- Radius of curvature using spherometer

$$
R=\frac{l^{2}}{6 h}+\frac{h}{2}
$$

UNITS AND MEASUREMENTS

- Speed $=\frac{\text { total path length }}{\text { time taken }}$

O Average speed $=\frac{\text { total distance travelled }}{\text { total time taken }}$
i.e. $v_{a v}=\frac{S_{1}+S_{2}+S_{3} \ldots \ldots . .}{t_{1}+t_{2}+t_{3} \ldots \ldots . .}$

- Instantaneous speed

$$
=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\frac{d s}{d t}
$$

- Velocity $=\frac{\text { displacement }}{\text { time taken }}$

O Average Velocity $=\frac{\text { total displacement }}{\text { total time taken }}$

- acceleration $a=\frac{\text { change in velocity }}{\text { time taken }}$
- Average acceleration
$\vec{a}_{a v}=\frac{\Delta \vec{v}}{\Delta t}$
O Instantaneous acceleration
$\vec{a}=\lim _{\Delta t \rightarrow 0}\left(\frac{\Delta \vec{v}}{\Delta t}\right)$
- Equation of motion for a uniform accelerated motion
O $\quad v=u+a t$
- $s=u t+\frac{1}{2} a t^{2}$

O $v^{2}-u^{2}=2 a s$

- $\quad S_{n}=u+\frac{a}{2}(2 n-1)$

Where u is initial velocity, v is final velocity, a is uniform acceleration, s is distance travelled in tiem t, s_{n} is distance covered in $n^{\text {th }}$ second. These equations are not valid if acceleration is non-uniform.

- Equation of motion for a body under gravity O $\quad v=u+g t$

O $\quad h=u t+\frac{1}{2} g t^{2}$

- $v^{2}-u^{2}=2 g h$
- $\quad h_{n}=u+\frac{1}{2} g(2 n-1)$
- Relative velocity

O If two bodies are moving along the same line in the same direction with velocities v_{A} and v_{B} relative to earth, the velocity of B relative to A will be given by $v_{B A}=v_{B}-v_{A}$.

- RElative velocity of rain
$\tan \alpha=\frac{v_{m}}{v_{r}}$
Where, $v_{m}=$ velocity of man $v_{r}=$ velocity of rain and α is the angle with the vertical direction at which man should hold umbrella to save himself from the rain.
- Unit vector, $\hat{a}=\frac{\vec{a}}{|\vec{a}|}$
where, \hat{a} is the unit vector drawn in the direction of \hat{a} and $|\vec{a}|$ is the magnitude of the vecotr.
- Dot or scalar product
$\vec{a} \cdot \hat{b}=a b \cos \theta$,
$0 \leq \theta \leq \pi$
- Properties of dot product
- $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
- $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
- $m(\vec{a} \cdot \vec{b})=m \vec{a} \cdot \vec{b}=\vec{a} \cdot(m \vec{b})=(\vec{a} \cdot \vec{b}) m$
where m is a sclar
- $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1$,
- $\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{j}=0$
- If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and

$$
\begin{aligned}
& \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} \\
& \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a} \cdot \vec{a}=a^{2} a_{1}^{2}+a_{2}^{2}+a_{3}^{3} . \\
& \vec{b} \cdot \vec{b}=b^{2}=b_{1}^{2}+b_{2}^{2}+b_{3}^{3} .
\end{aligned}
$$

O If $\vec{a} \cdot \vec{b}=0$ and \vec{a} and \vec{b} are not null vectors, then \vec{a} and \vec{b} are perpendicular.

- Cross or vector product
$\vec{a} \times \vec{b}=a b \sin \theta \hat{n}$.
- Properties of vector product
- $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
- $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

O $m(\vec{a} \times \vec{b})=(m \vec{a}) \times \vec{b}=\vec{a} \times(m \vec{b})=(\vec{a} \times \vec{b}) m$,

- $\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0, \hat{i} \times \hat{j}$

$$
=\hat{k}, \hat{j}=\hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}
$$

○ If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$
and $\vec{b}=b_{2} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$, then

$$
\vec{a} \times \vec{b}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

- $\vec{a} \times \vec{b}=$ than area of a parallelogram with sides \vec{a} and \vec{b}.
O If $\vec{a} \times \vec{b}=0$ and \vec{a} and \vec{b} are not null vectors, then \vec{a} and \vec{b} are parallel.
- Parallelogram law of vector addition

$$
\vec{R}=\vec{a} \times \vec{b}, \text { than }=\vec{R}=\sqrt{a^{2}+b^{2}+2 a \cos \theta}
$$

and than $\beta=\frac{b \sin \theta}{a+b \cos \theta}$

- If $\vec{R}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$
than $R=\sqrt{a^{2}+b^{2}-2 a b \cos \theta}$
and $\tan \beta=\frac{b \sin \left(180^{\circ}-\theta\right)}{a+b \cos \left(180^{\circ}-\theta\right)}=\frac{b \sin \theta}{a-b \cos \theta}$
Where, θ is the angle between \vec{a} and \vec{b}.
- Equation of trajectory
$y=x \tan \theta-\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta}$
Where u is initial velocity markes an angle θ with the horizontal.
- Time of flight

$$
T=\frac{2 u \sin \theta}{g}
$$

- Horizontal range
$R=\frac{u^{2} \sin 2 \theta}{g}$
O Range will be maximum.
if $\theta=45^{\circ}$

$$
R_{\max }=\frac{u^{2}}{g}
$$

- If angle of projection is changed from θ to

$$
\begin{aligned}
& \theta=\left(90^{\circ}-\theta\right) \text { than range } \\
& R^{\prime} \frac{u^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin \left[2\left(90^{\circ}-\theta\right)\right.}{g} \\
& \qquad=\frac{u^{2} \sin 2 \theta}{g}=R
\end{aligned}
$$

- Maximum Height
$H=\frac{u^{2} \sin ^{2} \theta}{2 g}$
O Height attained by projectile is maximum if $\theta=90^{\circ}$

$$
H_{\max }=\frac{u^{2}}{2 g}=\frac{R_{\max }}{2}
$$

O Here, range of projectile

$$
R=\frac{u^{2} \sin 2 \times 90^{\circ}}{g}=0
$$

O When the range is maximum, $\left(\theta=45^{\circ}\right)$

$$
H=\frac{u^{2} \sin ^{2} 45^{\circ}}{2 g}=\frac{u^{2}}{4 g}=\frac{R_{\max }}{4}
$$

- Projectile on an inclined plane (Motion up the Plane)

O Time of flight $T=\frac{2 u \sin (\theta-\beta)}{g \cos \beta}$
O Range

$$
R=\frac{u^{2}[\sin (2 \theta-\beta)-\sin \beta]}{g \cos ^{2} \beta}
$$

R will be maximum when $\sin (2 \theta-\beta)$ is maximum.
i.e. $\sin (2 \theta-\beta)=1$
$R_{\max }=\frac{u^{2}}{g(1+\sin \beta)}$ up the plane

- Motion down the plane

O Time of flight $T=\frac{2 u \sin (\theta+\beta)}{g \cos \beta}$
O Range, $R=\frac{u^{2}}{g}\left[\frac{\sin (2 \theta+\beta)+\sin \beta}{1 \sin ^{2} \beta}\right]$
R will be maximum, if $\sin (2 \theta+\beta)=1$
$R_{\max }=\frac{u^{2}}{g}\left[\frac{1+\sin \beta}{1-\sin ^{2} \beta}\right]=\frac{u^{2}}{g(1-\sin \beta)} \quad$ down
the plane

- At the highest point of a projectile motion given angular projection, the angular momentum of projectile.

$$
L=m u \cos \theta \times \frac{u^{2} \sin ^{2} \theta}{2 g}
$$

- In case of angular projection, the angle between velocity and acceleration varies from $0^{\circ}<\theta<180^{\circ}$.
- Angular acceleration
$\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$
- When a body moves in a circular path with increasing angular velocity, it has two linear acceleration.
O Centripetal accleration

$$
a_{c}=\frac{v^{2}}{r}=e \omega^{2}=v \omega=v(2 \pi v)^{2}
$$

O Tangential acceleration

$$
a_{t}=r \alpha
$$

Resultant acceleration

$$
a=\sqrt{a_{c}^{2}+a_{t}^{2}}
$$

$$
\tan \beta=\frac{a_{t}}{a_{c}} .
$$

- Centripeta 1 force

$$
F=\frac{m v^{2}}{r}
$$

LAWS OF MOTION

- Linear momentum

$$
\vec{p}=m \vec{v}
$$

Where, m is mass of a body moving with velocity \vec{v}.

- Newton's second law

Force, $\vec{F}=$ rate of change of linear momentum

$$
=\frac{d \vec{p}}{d t}=m \vec{a} .
$$

Where \vec{a} is acceleration produced in the body.

- Impulse = chanhe in linear momentum

$$
=F \times t=m(v-u)
$$

- Equilibrium of concurrent forces :

$$
\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\overrightarrow{F_{3}}+\ldots \cdot \overrightarrow{F_{n}}=0
$$

- Lamit's theorem :

$$
\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin \beta}=\frac{F_{3}}{\sin \gamma}
$$

Where, $\alpha=$ angle between $\overrightarrow{F_{2}}$ and $\overrightarrow{F_{3}}$

$$
\begin{aligned}
& \beta=\text { angle between } \overrightarrow{F_{3}} \text { and } \overrightarrow{F_{2}} \\
& \gamma=\text { angle between } \overrightarrow{F_{1}} \text { and } \overrightarrow{F_{2}}
\end{aligned}
$$

\square Apparent weight of a man a lift :

O When the lift is at rest or moving with constant velocity, the apparent weight = mg . Thus appare nt weight = true weight.
O When the lift is accelerating upwards with acceleration a, then apparent weight $=m(g+a)$.
O Thus apparent weight is more than the true weight.
O When the lift is accelerating downwards with acceleration a, then apparent weight $=m(g-a)$
Thus apparent weight is less than the true weight of man.

- In the cable supporting the lift breaks, the lift falls freely with $\mathrm{a}=\mathrm{g}$, then apparent wight

$$
=m(g-g)=0
$$

- When a person of mass m climbs up a rope with acceleration a, the tension in the rope is $T=m(g+a)$.
- When the person climbs down the rolpe with uniform speed, the te nsion in the rope is $T=m g$.

Thrust on the rocket $F=-u\left(\frac{d m}{d t}\right)$
Where, $\frac{d m}{d t}$ is mass of burnt gases escaping per second and $u=$ exhaust speed of the burnt gases.

- Velocity of rocket at any time t.
$v=u \log _{e}\left(\frac{m_{o}}{m}\right)$
- Accleration of rocket at any instant
$a=\frac{\text { upthrust-weight }}{\text { mass }}$
- Laws of friction :

O The mag nitude of the force of static fric tion between any two surfaces in contact can have the values

$$
\begin{equation*}
f_{s} \leq \mu_{s} R \tag{i}
\end{equation*}
$$

where the dimensionless constant μ_{s} is called the coefficient of static friction, R is the mag-
nitude of normal reaction force. The equality in equation.
O holds when the surface are on the verge of slipping i.e., $f_{s}=\left(f_{s}\right)_{\max }=\left(f_{t}\right)=\mu_{s} R$.

- The magnitude of the force of kinetic friction acting between two surface is

$$
f_{k}=\mu_{k} R
$$

where μ_{k} is coefficient of kinetic friction.

- Acceleration of a body down a rough inclined plane, $a=g(\sin \theta-\mu \cos \theta)$
where, θ is the ngle of inclination and μ is the coefficient of friction.
- Angle of repose
$\mu=\tan \alpha$
Where, α is angle of repose
- Work done in moving a body over a rough horizontal surface.

$$
W=\mu R \times s=\mu m g \times s
$$

Where, R is normal reaction and s is distance moved by body.

- Work done in moving a body up a rough inclined plane.

$$
W=(m g \sin \theta+\mu R) s .
$$

- Bending cyclist,
angle of bendiong $\tan \tan \theta=\frac{v^{2}}{r g}$
- Circular turning of roads
- The velocity with which a car can ta ke a cir can take a circular path of radius r
without slipping is given by $v_{\max }=\sqrt{\mu_{s} r g}$
O The maximum permissible speed to avoid slipping,

$$
v_{\max }=\left[\frac{r g\left(\mu_{\mathrm{s}}+\tan \theta\right)}{1-\mu_{\mathrm{s}} \tan \theta}\right]^{1 / 2}
$$

O $v_{0}^{2}=r g \tan \theta$ or $\tan \theta=\frac{v_{0}^{2}}{r g}$
O $\tan \theta=\frac{h}{\sqrt{b^{2}-h^{2}}}=\frac{v_{0}^{2}}{r g}$

- Motion in a vertical circle

O Tension at any position of angular displacement, (θ) along a vertical circle is given by

$$
T=\frac{m v^{2}}{r}+m g \cos \theta
$$

O At the lowest point of vertical circle, $\theta=0^{\circ}$
Tension at the lowest point is given by

$$
T_{L}=\frac{m v_{L}^{2}}{r}+m g
$$

O At the highest point of the vertical circle, $\theta=180^{\circ}$. Tension at the highest point is given by

$$
T_{H} \frac{m v_{H}^{2}}{r}-m g
$$

O Minimum velocity at the highest point,

$$
v_{H}=\sqrt{g r}
$$

O Minimum ve locity at the lowest point for looping the loop, $v_{L}=\sqrt{5 g r}$

O When the string is horizonta $1, \theta=90^{\circ}$, minimum velocity, $v=\sqrt{3 g r}$.
O Height through which a body should fall for looping the vertical loop $h=5 r / 2$.

WORK, ENERGY AND POWER

- $W=\vec{F} \cdot \vec{S}=F S \cos \theta$

Where θ is angle between \vec{F} and \vec{S}

- Work done by a variable force, $W=\int_{x_{1}}^{x f} F(x) d x$
- Kinetic energy: $K=\frac{1}{2} m v^{2}$.
- Relation between kinetic (K) and linear momentum (p)

$$
K=\frac{p^{2}}{2 m} \text { or } p=\sqrt{2 m K}
$$

Work done by a spring force

$$
W=\int \vec{F}_{\text {spring }} \cdot \overrightarrow{d s}
$$

- Work energy theorem : $W=K_{f}-K_{i}$
- Elastic potential energy : $U=\frac{1}{2} k x^{2}$
- Gravitational potential energy : $U=m g h$
- Power, $P=\frac{W_{\text {total }}}{\mathrm{t}}$
- Instantaneous power, $P=\frac{d W}{d t}=\vec{F} \cdot \frac{d \vec{s}}{d t}=\vec{F} \cdot \vec{v}$
- Elastic colision in one dimension

$$
\begin{aligned}
& v_{1}=\frac{\left(m_{1}-m_{2}\right) u_{1}}{\left(m_{1}+m_{2}\right)}+\frac{2 m_{2} u_{2}}{m_{1}+m_{2}} \\
& v_{2}=\frac{2 m_{1} u_{1}}{m_{1}+m_{2}}+\frac{\left(m_{2}-m_{1}\right)}{m_{1}+m_{2}} u_{2}
\end{aligned}
$$

- Perfectly inelastic collision in one dimension

- Loss in kinetic energy in elastic in elastic collision is

$$
\Delta K=\frac{1}{2} \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}\left(u_{1}-u_{2}\right)^{2}
$$

- Coefficient of restitution

$$
e=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}
$$

- Kinetic energy lost in inelastic collision is

$$
\Delta K=\frac{1}{2} \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}\left(u_{1}-u_{2}\right)^{2}\left(1-e^{2}\right)
$$

- A ball falls from a height h, it strikes the ground with a ve locity $u=\sqrt{2 g h}$. Let it rebound with a velocity v and rise to a height h_{1}.

$$
e=\frac{v}{u}=\frac{\sqrt{2 g h_{1}}}{\sqrt{2 g h}}=\sqrt{\frac{h_{1}}{h}}
$$

or $\quad \sqrt{h_{1}}=e \sqrt{h} \quad$ or $\quad h_{1}=e^{2} h$.

- A ball dropped from a heigh h and rebounding. The time taken by the ball in rising to height h_{1} and coming back is $2 \sqrt{\frac{2 h_{1}}{g}}=2 e \sqrt{\frac{2 h}{g}}$.

ROTATIONALMOTION

- The coordinates of centre of mass are given by

$$
X_{C M}=\frac{\sum_{i-1}^{N} m_{i} x_{i}}{\sum_{i=1}^{N} m_{i}}=\frac{\sum_{i-1}^{N} m_{i} x_{i}}{M}
$$

$$
Y_{C M}=\frac{\sum_{i-1}^{N} m_{i} y_{i}}{\sum_{i=1}^{N} m_{i}}=\frac{\sum_{i-1}^{N} m_{i} y_{i}}{M}
$$

$$
Z_{C M}=\frac{\sum_{i-1}^{N} m_{i} Z_{i}}{\sum_{i=1}^{N} m_{i}}=\frac{\sum_{i-1}^{N} m_{i} Z_{i}}{M}
$$

where $M=m_{1}+m_{2}+m_{3} \ldots m_{N}$ (total mass of system)

- For a continuous distribution of mass, the coordinates of centre of mass are given by

$$
\begin{aligned}
X_{C M} & =\frac{1}{M} \int a d m ; Y_{C M}=\frac{1}{M} \int y d m ; Z_{C M} \\
& =\frac{1}{M} \int z d m
\end{aligned}
$$

- Velocity of centre of mass is given by

$$
\vec{v}_{C M}=\frac{\sum_{i=1}^{N} m_{i} \vec{v}_{i}}{\sum_{i=1}^{N} m_{i}}=\frac{\sum_{i=1}^{N} m_{i} \vec{v}_{i}}{M}
$$

Acceleration of centre of mass is given by

$$
\vec{a}_{C M}=\frac{\sum_{i=1}^{N} m_{i} \vec{a}_{i}}{\sum_{i=1}^{N} m_{i}}=\frac{\sum_{i=1}^{N} m_{i} \vec{a}_{i}}{M}
$$

- Angular ve locity : $\omega=\frac{d \theta}{d t}$
- Angular acceleration : $\alpha=\frac{d \theta}{d t}$
- Equations of rotational motion
- $\omega=\omega_{0}+\alpha t$
- $\theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
- $\omega^{2}-\omega_{0}^{2}=2 \alpha \theta$
- Torque $\vec{\tau}=\vec{r} \times \vec{F}$

In magnitude $\tau=r F \sin \theta$

- Angular momentum $\vec{L}=\vec{r} \times \vec{p}$

In magnitude, $L=r p \sin \theta$

- Relationship between torque and angular moment

$$
\text { i.e., } \vec{\tau}_{e x t}=\frac{d \vec{L}}{d t}
$$

- Moment of inerTIA : $i=\sum_{i=1}^{N} m_{i} r_{i}^{2}$
- Theorem of perpendicular axis: $I_{2}=I_{x}+I_{y}$ where, x and y are two perpendicumlar to axes in the plane and z axis is perpendicular to its plane.
- Theorem of parallel axes : $I=I_{C M}+M d^{2}$
where, $I_{C M}$ is the moment of ineratia of the body about an axis passing through the centre of mass and d is the perpendicular distance between two parallel axis.

S.No.	Body	Axis of rotation	Moment of inertia (I)	Radius of gyration (K)
Uniform circular ring of mass M and radius R	(i) about an axis passing through its centre and perpendicular to its plane	(ii) about a diameter		R
			$\frac{1}{2} M R^{2}$	$\frac{R}{\sqrt{2}}$

		(iv) about a tangent perpendicular to its own plane	$\frac{3}{2} M R^{2}$	$\sqrt{\frac{3}{2}} R$
3.	Solid sphere of radius R and mass M	(i) about its diameter	$\frac{2}{5} M R^{2}$	$\sqrt{\frac{2}{5}} R$
		(ii) about a tangetial axis	$\frac{7}{5} M R^{2}$	$\sqrt{\frac{7}{5}} R$
4.	Hollow sphere of radius Rand mass M	(i) about its diameter	$\frac{2}{3} M R^{2}$	$\sqrt{\frac{2}{3}} R$
		(ii) about a tangential axis	$\frac{5}{3} M R^{2}$	$\sqrt{\frac{5}{3}} R$
5.	Solid cylinder of length l, radius R and mass M	(i) about its own axis	$\frac{1}{2} M R^{2}$	$\frac{R}{\sqrt{2}}$
		(ii) about an axis passing through its centre and perpendicular to its own axis	$M\left[\frac{l^{2}}{12}+\frac{R^{2}}{4}\right]$	$\sqrt{\frac{l^{2}}{12}+\frac{R^{2}}{4}}$
		(iii) about the diameter of one of the of cylinder	$M\left[\frac{l^{2}}{3}+\frac{R^{2}}{4}\right]$	$\sqrt{\frac{l^{2}}{3}+\frac{R^{2}}{4}}$
6.	Thin rod of length L	(i) about an axis through its centre and perpendicular to the rod	$\frac{M L^{2}}{12}$	$\frac{L}{\sqrt{12}}$
		(ii) about an axis through one and perpendicular to the rod.	$\frac{M L^{2}}{3}$	$\frac{L}{\sqrt{3}}$

- Relation between torque and moment of inertia Tprque $\tau=I \alpha$
where α is the angular acceleration.
- Relation between angular moment and momemt of inertia, $L=I \omega$
- Kinetic energy of rotatiobnal motion, $K_{R}=\frac{1}{2} I \omega^{2}$.
- Kinetic energy of a rolling body = translational kinetic energy $\left(K_{T}\right)+$ rotational kinetic energy

$$
\begin{aligned}
& \left(K_{R}\right) \\
& \quad=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}=\frac{1}{2} M v^{2}\left[1+\frac{K^{2}}{R^{2}}\right]
\end{aligned}
$$

- When a body rolls down an inclined plane opf inclination θ without slipping its ve locity at
the bottom of incline is give n by $v=\sqrt{\frac{2 g h}{1+\frac{K^{2}}{R^{2}}}}$
where h is the height of the incline.
- When a body rolls down on an inclined plane without slipping, its acxceleration down the inclined plane is given by $a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}$.
- When a body roll down on an inclined plane without slipping, time taken by the body to
reach the bottom is given by $t=\sqrt{\frac{2 l\left(1+\frac{K^{2}}{R^{2}}\right)}{g \sin \theta}}$
where I is the length of thew inclined plane.

GRAVITATION

- Newton's universal lae of gravitation

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

Where, r is the separation between masses of objects m_{1} and m_{2}.

- Acceleration due to gravity

$$
g=\frac{G M}{R^{2}}
$$

Where M and R are the mass and radius of Earth respecxtively.

- Relationship between g and G

$$
g=\frac{G M_{e}}{R_{e}^{2}}=\frac{G \frac{4}{3} \pi R_{e}^{3} \rho}{R_{e}^{2}}=\frac{4}{3} \pi G R_{e} \rho
$$

where M_{e} is the mass of the earth, R_{e} is the radius of the earth and ρ is the uniform density of the material of the earth.

- The acceleration due to gravity at height h above h above the surface of earth is given by

$$
g_{h}=\frac{G M_{e}}{(R+h)^{2}}=g\left(1+\frac{h}{R_{e}}\right)^{-2}\left(\therefore g=\frac{G M_{e}}{R_{e}^{2}}\right)
$$

For $h \ll R_{e}$
$\therefore g_{h}=g\left(1-\frac{2 h}{R_{e}}\right)$

- The acceleration due to gravity at a depth d below the surface of earth given by

$$
\begin{aligned}
g_{d} & =\frac{G M_{e}}{R_{e}^{3}}\left(R_{e}-d\right)=g\left(\frac{R_{e}-d}{R_{e}}\right) \\
& =g\left(1-\frac{d}{R_{e}}\right)
\end{aligned}
$$

- At the centre, $d=R_{e} \therefore g_{d}=0$.
- Fravitational field intensity
$\vec{E}=-\frac{G m}{r^{2}}$
Where, m is test mass.
- The gravitational field intensity due to spherical shell of radius R and M at a point distant r from the centre of shell is given as follows :
O At a point outside the shell i.e. $r>R$

$$
E=-\frac{G M}{r^{2}}
$$

O At a point on the surface of the shell i.e.r $=R$

$$
E=-\frac{G M}{R^{2}}
$$

O At a point inside the shell i.e.r. $<R, E=0$
\square For solid sphere gravitational field intensity change only at a point inside the sphere i.e., $r<R$.

$$
E=-\frac{G M r}{R^{3}}
$$

- Gravitational potential : $V=-\frac{G M}{r}$
- The gravitational potential due to a spherical shell of radius R and mass M at a point diostant r from the centre of the shell is give n as follows :
O At a point outside the shell i.e.r. $>R$

$$
V=-\frac{G M}{r}
$$

O At a point on the surface of the shell i.e.r $=R$

$$
V=-\frac{G M}{R}
$$

O At a point inside the shell i.e.r. $>R$

$$
V=-\frac{G M}{R}
$$

- The gravitational potential due to a solid sphere at a point inside the sphere i.e.r. $<R$

$$
V=-\frac{G M\left(3 R^{2}-r^{2}\right)}{2 R^{3}}
$$

- Gravitational potential potential energy :

$$
U=-\frac{G M m}{r}
$$

- Gravitational potential energy of a body of mass m at height h above the surface of the earth is given by

$$
U_{h}=\frac{-G M_{e} m}{\left(\mathrm{R}_{\mathrm{e}}+h\right)}
$$

- Gravitational potential energy of a body of mass m on the surface of the earth is given by

$$
U_{s}=\frac{-G M_{e} m}{R_{e}}
$$

- Orbital speed of satellite, when it is revoluing around earth at a height h is given by

$$
v_{0}=\sqrt{\frac{G M_{e}}{R_{e}+h}}=R_{e} \sqrt{\frac{g}{R_{e}+h}} \quad\left(\text { As } g=\frac{G M_{e}}{R_{e}^{2}}\right)
$$

- Time period of a satellite:

$$
T=2 \pi \sqrt{\frac{\left(R_{e}+h\right)^{3}}{G M_{e}}}=\frac{2 \pi}{R_{e}} \sqrt{\frac{\left(R_{e}+h\right)^{3}}{g}}
$$

- Angular momentum of a satellite

$$
L=m v_{0} r=m r \sqrt{\frac{G M}{r}}=\left[m^{2} G M r\right]^{1 / 2}
$$

- Kinetic energy of a satellite,

$$
K=\frac{1}{2} m v_{0}^{2}=\frac{1}{2} \frac{G M_{e} m}{\left(R_{e}+h\right)}=\frac{|\mathrm{U}|}{2}
$$

- Potential energy of a satellite, $U=\frac{-G M_{e} m}{R_{e}+h}$
- Total energy (mechanical) of a satellite

$$
E=K+U=-\frac{G M_{e} m}{2\left(R_{e}+h\right)}
$$

- Escape speed: $v_{e}=\sqrt{\frac{2 G M_{e}}{\mathrm{R}_{\mathrm{e}}}}$

PROPERTIES OF SOLIDS

- Stress $=\frac{\text { restoring }}{\text { area }}$
- Longitudianal stress $=\frac{F_{N}}{A}$
- Volumetric stress $=\frac{F_{V}}{A}$
- Tangential stress $=\frac{F_{T}}{A}$
- Longitudinal strain $=\frac{\text { change in length }}{\text { original length }}=\frac{\Delta L}{L}$
- Volumetric strain $=\frac{\text { change in volume }}{\text { original volume }}=\frac{\Delta V}{V}$
- Hooke's law : $=E \times$ Strain or $\frac{\text { Stress }}{\text { Strain }}=E$

O Young's modulus, $Y=\frac{\text { normal stress }}{\text { longitudinal strain }}$

$$
=\frac{F / A}{\Delta L / L}=\frac{F L}{A \Delta L}=\frac{F L}{\pi r^{2} \Delta L}
$$

O Bulk modulus, $B=\frac{\text { normal stress }}{\text { volumetric strain }}$

$$
=\frac{-F / A}{\Delta V / V}=-\frac{P V}{\Delta V}
$$

-ve sign shows that volume is decreasing when force id applied.
O Modulus of rigidity $(\eta)=\frac{\text { tangential stress }}{\text { shearing strain }}$

$$
=\frac{F / A}{\theta}=\frac{F}{A \theta} .
$$

- In case of a solids and liquids bulk modulus is almost constant.
\square In case of a gas, it is process dependent
O In isothermal process, $K=K_{i}=P$
O In adiabatic process $K=K_{a}=\gamma P$
- Compressiblity $=\frac{1}{\text { Bulk modulus (} B \text {) }}$
when pressure is applied on a substance, its volume decreses while mass remains constant. Hence, its density will increases,
$\rho^{\prime}=\frac{\rho}{1-\Delta P / B}$ or $\rho^{\prime}=\rho\left(1+\frac{\Delta P}{B}\right)$ if $\frac{\Delta P}{B} \ll 1$

Poisson's ratio

$$
(P): \frac{\text { lateral strain }}{\text { longitudinal strain }}=-\frac{\Delta e / r}{\Delta L / L}
$$

- Relations among eleastic constants (Y, B, η and σ)
- $Y=3 B(1-2 \sigma)$

○ $Y=2 \eta(1+\sigma)$,

- $\sigma=\frac{3 B-2 \eta}{2 \eta+6 B}$,
- $\frac{9}{Y}=\frac{1}{B}+\frac{3}{\eta}$
- Breaking force $=$ Breaking stress \times Area of cross section of the wire.
- Every wire is like a spring whose force constant is equal to

$$
K=\frac{Y A}{L} \text { or } K \propto \frac{1}{L}
$$

- Work done in a stretched wire, $W=\frac{1}{2} \times$ stress \times strain \times colume

$$
\begin{aligned}
& =\frac{1}{2} \frac{F}{A} \times \frac{\Delta L}{L} \times A L=\frac{1}{2} F \times \Delta L \\
& =\frac{1}{2} \times \text { load } \times \text { elongation }
\end{aligned}
$$

- Elastic potential energy per unit volume of a stretched wire,

$$
u=\frac{1}{2} \times \text { stress } \times \text { strain }=\frac{1}{2} \times Y \times(\text { strain })
$$

In case of elongation by its own weight, $F(=M g)$ will act at centre of gravity of the wire, so that length of wire which is stretched is $(\mathrm{L} / 2)$.
$\therefore \Delta L=\frac{M g(L / 2)}{A Y}=\frac{M g L}{2 A Y}=\frac{\rho g L^{2}}{2 Y}$

$$
[\therefore M=\rho A L]
$$

- In case kof twisting of a cylinder (or wire) of lenght L and radius r, elastic restoring couple per unit twist is given by

$$
C=\frac{\pi \eta r^{4}}{2 L}
$$

where η is modulus of rigidity of the material of wire.

- Interatomic force constant (k)

$$
k=\frac{\text { interatomic force }}{\text { change in interatomic distance }}=\frac{F_{0}}{\Delta r}=Y r_{0}
$$

․ Depression of a beam loaded at the middle by a load W and supported at the ends

$$
\delta=\frac{W L^{3}}{48 Y I_{g}}
$$

- Depression of a cantilever at a free end

$$
\delta=\frac{W L^{3}}{3 Y I_{g}}
$$

PROPERTIES OF FLUIDS

ㅁ Density, $\rho=\frac{m \text { (mass) }}{V \text { (volume) }}$

- Relative density $=\frac{\text { density of substance }}{\text { density of water at } 4^{\circ} \mathrm{C}}$
- Pressure $P=\frac{\text { thrust }(F)}{\operatorname{area}(A)}=\frac{F}{A}$
- For a point at a depth h below the surface of a liquid of density ρ, hydrostatic pressure P is given by $P=P_{0}+h \rho g$ where P_{0} represents the atmospheric pressure.
- When a body of density ρ_{B} (which may be different from the density of material of body) and volume V is completely immersed in a liwuid of debnsity σ, following two forces act on the body :

O weight of body $W=V \rho_{B} g$ acting verti cally downwards through the centre of gravity. Buoyant force or upward thrust $W^{\prime}=V \sigma g$ equal to weight of the liquid dis-
placed, acting vertically upwards through the centre of buoyancy.

- Depending ukpon relative magnitudes of above two forces, following three cases are possible : O Thedensity of body is greater than that of liquid (i.e., $\rho_{B}>\sigma$). In this situation as weight wil be more than ukpthrust, the body will sink.
O The density of body is equal to the density of liquid (i.e., $\rho_{B}>\sigma$). In this situation W $=W$ ' so the body wil move upwards and in equilibrium will float partially immersed in the liquid such that

$$
W=V_{\text {in }} \sigma g \text { or } V \rho_{B} g \text { or } V \rho_{B}=V_{\text {in }} \sigma
$$

- Equation of continuity $A_{1} v_{1}=A_{2} v_{2}$
- Surface tension, $S=\frac{\text { Force }}{\text { Length }}=\frac{F}{L}$
- Work done oin forming a liquid drop of radius r, surface tension S is,

$$
W=2 \times 4 \pi r^{2} S=8 \pi r^{2} S
$$

- Work done in increasing the radius of a liquid drop from r_{1} to r_{2} is

$$
W=4 \pi S\left(r_{2}^{2}-r_{1}^{2}\right)
$$

. Work done in increasiong the radius of a soap bubble from r_{1} to r_{2} is

$$
W=8 \pi S\left(r_{2}^{2}-r_{1}^{2}\right)
$$

- When n number of smaller drops of a liquid, each of radius r, surface tenion S are combined to form a bigger drop of radius R , then

$$
R=n^{1 / 3} r
$$

- The surface area of bigger drop $=4 \pi R^{2}=4 \pi n^{2 / 3} r^{2}$. It is less than the area of n smaller drops.
- Work done in breaking a l;iquid drop of radius R into n equal small drops

$$
W=4 \pi R^{2}\left(n^{1 / 3}-1\right) S
$$

where S is the surface tension.

- Excess pressure inside a liquid drop is given by

$$
P=\frac{2 S}{r} .
$$

- Excess pressure inside a soap bubble is give n by

$$
P=\frac{4 S}{r} .
$$

- Excess pressure inside an air bubble in a liquid is given by

$$
P=\frac{2 S}{r} .
$$

- When an air bubble of radius r is at depth h below the free surface of liquid of density ρ and surface te nsion S , then the excess pressure inside the bubble,

$$
P=\frac{2 S}{r}+h \rho g .
$$

- If r_{1} and r_{2} are the radiii of curved liquid surface, then excess pressur inside the liquid surface is given by

$$
P=S\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

- When two soap bubbles of radii r_{1} and r_{2} coalesce to form a new soap bubble of radius r, under kisothermal conditions then $r=\sqrt{r_{1}^{2}+r_{2}^{2}}$.
- When two soap bubbles of radii r_{1} and r_{2} are in conta ct with each other and r is the radius of the interface, then $r=\frac{r_{1} r_{2}}{r_{2}-r_{1}}$.
- The total pressure inside an air bubble of radius r at a depth h below the surface of liquid of density ρ is

$$
P=P_{0}+h \rho g+\frac{2 S}{r}
$$

- The rise or fall in a capillary tube is given by
$h=\frac{2 S \cos \theta}{e \rho g}=\frac{2 S}{R \rho g} \quad\left(\therefore \cos \theta=\frac{r}{R}\right)$
where θ is theangle of contact.
- According to Newton viscous force (F) of a liquid between two layers is given by

$$
F=-\eta A \frac{d v}{d x}
$$

where η = coefficient of ciscosity of the liquid

- Poiseuille's equation : $Q=\frac{\pi P r^{4}}{8 \eta l}=\frac{P}{R}$
$R=\frac{8 \eta l}{\pi r^{4}}$ is called liquid resistance.
- Stroke's law : $F=6 \pi \eta r v$.
- Terminal velocity: $v_{T}=\frac{2 r^{2}(\rho-\sigma) g}{9 \eta}$.
- Critical velocity: $v_{c}=\frac{K \eta}{\rho r}$
- Reynold nu mber : $v_{c}=\frac{N_{R} \eta}{\rho D}$ or $N_{R}=\frac{\rho D v_{c}}{\eta}$
- Bernoulli's theorem :

$$
P+\rho g h+\frac{1}{2} \rho v^{2}=\text { constant }
$$

О $P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}$
\square Velocity of efflux $v=\sqrt{2 g h}$
\square Time after while liquid strikes the horiontal syrface

O $t=\sqrt{\frac{2(H-h)}{g}}$
O \quad Range $=R=v t=\sqrt{2 g h} \times 2 \sqrt{h(H l-h)}$
O $\quad R_{\max }=H$ at $h=\frac{H}{2}$
O If the hole is at the bottom of the tank, time t ta ken by the tank to emptied.

$$
t=\frac{A}{a} \sqrt{2 H / g}
$$

where a is the are of the hole.

THERMAL, PROPERTIES OF MATTER

\square Relationship between temperature scales:

$$
\begin{aligned}
\frac{T_{C}-0}{100} & =\frac{T_{F}-32}{180}=\frac{T_{R}-0}{80} \\
& =\frac{T_{R a}-460}{212}=\frac{T_{K}-273.15}{100}
\end{aligned}
$$

\square Coefficient of limnear expansiion of a solid,

$$
\begin{aligned}
\alpha & =\frac{\text { increase in area }}{\text { original length } \times \text { rise in temperature }} \\
& =\frac{\Delta L}{L \Delta T}
\end{aligned}
$$

\square Coefficient of are expansion of a solid,

$$
\begin{aligned}
\beta & =\frac{\text { increase in area }}{\text { original area } \times \text { rise in temperature }} \\
& =\frac{\Delta A}{V \Delta T}
\end{aligned}
$$

\square Coefficint of volume expansion of a solid, $\gamma=\frac{\text { increase in volume }}{\text { original are } \times \text { rise in temperature }}=\frac{\Delta V}{V \Delta T}$
\square Relation between α, β and γ

$$
\alpha=\frac{\beta}{2}=\frac{\gamma}{3} .
$$

\square The specific heat of a su bstance is given by

$$
s=\frac{1}{m} \frac{\Delta Q}{\Delta T}
$$

- The molar specific heat of a substance is given by

$$
C=\frac{1}{\mu} \frac{\Delta Q}{\Delta T}
$$

- Thermal capacity, $S=s \times m$
\square The latent heat of a substance's given by

$$
L=\frac{Q}{m}
$$

- Principal of calorimetry:

Heat lost by one body = Heat ga ined by the other.
\square When a bar of length L and uniform are of cross section A with its ends maintaned at temperatures T_{1} and T_{2}, the rate of flow of heat (or heat current) H is given by

$$
H=\frac{K A\left(T_{1}-T_{2}\right)}{L}
$$

\square Thermal resistance of the bar, $R_{H}=\frac{1}{K A}$
\square Stefan Boltzmann low: $E=\sigma T^{4}$

- If the body is not a perfectly b lack body, then $E=\sigma T^{4}$
\square The energy radiated persecond by a body of area $A=e A \sigma T^{4}$
\square Newto n's law of cooling : $\frac{d Q}{d t}=-k\left(T-T_{s}\right)$
\square Wien's displacement law : $\lambda_{m} T=$ constant
\square Temperature of sun is given by $T=\left(\frac{R^{2} S}{R_{s}^{2} \sigma}\right)^{1 / 4}$

THERMODYNAMICS

\square The work done by a gas is $W=\int d W=\int_{V i}^{V_{f}} P d V$ Where V_{i} and V_{f} are the i ntial and final volume of the gas.
\square First law of thermodynamics :
$\Delta Q=\Delta U+\Delta W$
\square Equation of istherma process,
$W=\mu R T \ln \left(\frac{V_{f}}{V_{i}}\right) ; W=m R T \ln \left(\frac{P_{i}}{P_{f}}\right)$
\square Equation of adiabatic process, PV $\gamma=$ constant where $\gamma=C_{p} / V_{v}$.
\square Work done during adiabatic process, $W=\frac{\left(P_{i} V_{i}-P_{f} V_{f}\right)}{(\gamma-1)} ; W=\frac{\mu R\left(T_{i}-T_{f}\right)}{\gamma-1}$
\square Equation of isobaric process $\frac{V}{T}=$ constant. O Work done during isobaric process,

$$
W=P\left(V_{f}-V_{i}\right)=\mu R\left(T_{f}-T_{i}\right)
$$

Efficient of a heat engine,
$\eta=\frac{\text { work done }}{\text { heat absorbed }}=\frac{W}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}}$
\square The coefficient of performance of refrigrator,
$\beta=\frac{\text { heat extracted from the resevoir at atemperature } \mathrm{T}_{2}}{\text { work done to transfer the heat }}$

$$
=Q_{2}=\frac{Q_{2}}{Q_{1}-Q_{2}}
$$

\square The efficiency of a carnot engine is given,

$$
\eta=1-\frac{T_{2}}{T_{1}}
$$

KineticTheory of Gases
\square Equation of an ideal gas : $P V=\mu R T=k g N T$
Boltzmann constant

$$
k_{B}=\frac{R}{N_{A}}
$$

N_{A} is the Avogadro's number.
Here, $\mu=\frac{m}{M}=\frac{N}{N_{A}}$
Where, m isthe mass of the gas containing N molecules, M is the molar mass
\square Equation of a real gas :
$\left(P+\frac{\mu^{2} a}{V^{2}}\right)(V-\mu b)=\mu R T$
where, a and b are Va n der waals constants
\square Critical temperature: $T_{C}=\frac{8 a}{27 R b}$
\square Critical te mperature : $P_{C}=\frac{a}{27 b^{2}}$

- Critical volume : $V_{C}=3 b$
\square According to kinetic theory of an ideal gas pressure exerated by an ideal gas given by

$$
P=\frac{1}{3} m n \overline{v^{2}}
$$

\square Root mean squre speed,

$$
V_{r m s}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 k_{B} T}{m}}
$$

\square Average speed, $\bar{v}=\sqrt{\frac{8 R T}{M}}=\sqrt{\frac{2 k_{B} T}{m}}$
\square Most probable speed, $v_{m p}=\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 k_{B} T}{m}}$.
$\square \quad v_{r m s}>\bar{v}>v_{m p}$
\square Average translational kinetic energy of a gas molecule is $E=\frac{3}{2} k_{B} T$
\square The molar specific heats are given by
O $\quad C_{V}($ rigid diatomic $)=\frac{5}{2} R$
O $\quad C_{P}($ rigid diatomic $)=\frac{7}{2} R$
O $\quad \gamma($ rigid diatomic $)=\frac{7}{5}$
\square The mean free path, $\lambda=\frac{1}{\sqrt{2} n \pi d^{2}}$

OSCILLATIONS

\square Angular frequency $\omega=2 \pi \nu=\frac{2 \pi}{T}$
\square Velocity of a particle in S.H.M. is given by $v=\omega \sqrt{A^{2}-x^{2}}$
\square Acceleration of a particle in S.H.M. is given by $a=-\omega^{2} x$

- The kinetic energy of a paraticle in S.H.M. is given by $K=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)$
\square The potential energy of a particle in S.H.M. is given by, $=\frac{1}{2} m \omega^{2} A^{2} \sin ^{2}(\omega t+\phi)$
- Total energy of a particle in S.H.M. is given by $E=\frac{1}{2} m \omega^{2} A^{2}$
\square Spring pendulum
$T=2 \pi \sqrt{\frac{m}{k}}$
\square The time period of a simple pendulum is given by $T=2 \pi \sqrt{L / g}$.
\square If the length of a simple pend ulum is compa-
rable with the radius of earth $\left(R_{e}\right)$, thewn time period T is given by
$T=2 \pi \sqrt{\frac{1}{g\left(\frac{1}{L}+\frac{1}{\mathrm{R}_{\mathrm{e}}}\right)}}$
\square If a simple pendulu m is suspended in a lift and lift is accelerting downwards with an acceleration a, then its time period is given by
$T=2 \pi \sqrt{\frac{L}{g-a}}$
\square For upwards motion, $T=2 \pi \sqrt{\frac{L}{g=a}}$
\square For upwards or downwards with constant velocity $v, T=2 \pi \sqrt{\frac{L}{g}}$
\square If a simple pendulum is suspended in a lift and lift is freely falling with acceleration g, then its time period is given by $T=2 \pi \sqrt{\frac{L}{g-g}}=\infty$
\square If a simple pendulum is suspended in carriage which is acclerating horizontally with an acceleration a, then its time period is given by

$$
T=2 \pi \sqrt{\frac{L}{\left(\sqrt{g^{2}+a^{2}}\right)}}
$$

\square If a simple pendulum is suspended from the roof of a trollel which is moving down an inclined plane of inclination θ, then the time period is given by
$T=2 \pi \sqrt{\frac{L}{g \cos \theta}}$
\square If a simple pendulum whose bob is of density ρ oscillates in a non-visocous liqid of density $\sigma(\sigma<\rho)$,
$T=2 \pi \sqrt{\frac{L}{\left(1-\frac{\sigma}{\rho}\right) g}}$

- Torsional pendulum :
$T=2 \pi \sqrt{\frac{I}{C}}$
where I is the moment of inertia of the disc about the suspension wire as axis of rotation and C is the restoring torque per unit twit.
$C=\frac{\pi \eta r^{4}}{2 L}$
where r is the radius, L is the length and η is the modlus of rigidity of a wire resopectively.
\square The time period of oscillation of a liquid in U tube, is given by

$$
T=2 \pi \sqrt{\frac{L}{2 g}=2 \pi \sqrt{\frac{h}{g}}}
$$

where $\mathrm{L}=$ total length of liwuid column in a Utube, $h=$ height of liquid column in each limb Also $h=L / 2$
\square The time period of oscillation of floating cylinder in a liquid is given by $T=2 \pi \sqrt{\frac{m}{A \sigma g}}$
where m is the mass of a cylinder, A is the are of cross section of a cylinder, σ is the density of a liquid
or $T=2 \pi \sqrt{\frac{h \rho}{\sigma g}=2 \pi \sqrt{\frac{h^{\prime}}{g}}}$
where h is height of cylinder of density ρ and σ is the density of a liquid in which cylinder is floating, h ' is the of the cylinder inside the liquid.

- Time period of LC oscillations of a circuit containing capacitance C and inductance L is given by

$$
T=2 \pi \sqrt{L C}
$$

\square If a wire of length L, are of cross-section A, young's modulus Y is streched by suspending a mass m , then the mass can oscillate with time period
$T=2 \pi \sqrt{\frac{m L}{Y A}}$
\square If gas is enclosed in a cylinder of volume V fitted with piston of cross section area A mass M and the piston is slightly depressed and released, the piston can oscillate with a time period

$$
T=2 \pi \sqrt{\frac{M V}{B A^{2}}}
$$

WAVES

\square Speed, frequency and wavelength relation

$$
v=\lambda v
$$

\square Intensity of a wave : $I=2 \pi^{2} v^{2} A^{2} \rho v$
where v is the frequency, A is the amplitude, v is the velocity of the wave, ρ is the density of the medium.
\square Wnergy density, $v=\frac{\omega}{k}$
\square Particle velocity,

$$
v_{\text {particle }}=\frac{d y}{d t}=\omega A \cos (k x-\phi)=-\left(\frac{\omega}{k}\right) \frac{d y}{d x}
$$

\square Particle acceleration, $a=\frac{d^{2} y}{d t^{2}}=-\omega^{2} y$
\square Relationship between phase difference, path difference and toime difference

Phase disserence $=\frac{2 \pi}{\lambda} \times$ path difference
Phase difference $=\frac{2 \pi}{T} \times$ time difference
\square Speed of a transverse waves on a streched string is given by $v=\sqrt{\frac{T}{\mu}}$
where T is the tension in the string, μ is the mass per unit length of the string callel linear density.
\square Speed of a transverse wave in a solid is given by

$$
v=\sqrt{\frac{\eta}{\rho}}
$$

where η is the modulus of rigidity, ρ is the density of a solid.
\square Speed of a longitudinal wave in a meduim is given by $v=\sqrt{\frac{E}{\rho}}$
where E is the modulus of eleasticity and ρ is the density of the medium.
\square Speed of a longitudinal wave in a metallic bar
is given $v=\sqrt{\frac{Y}{\rho}}$
where Y is the Young's modulus and ρ is density of a fluld.
\square Newon's formula : $v=\sqrt{\frac{P}{\rho}}$
\square Speed of sound in a gas, $v=\sqrt{\frac{\gamma}{\rho}} v_{\text {rms }}$
O Effect of temperature : $v_{t}=v_{0}\left[1+\frac{t}{546}\right]$
where v_{0} is the speed of sound in the gas at $0^{\circ} \mathrm{C}$.
O Effect of pressure: The speed of sound in a gas is given by

$$
v=\sqrt{\frac{\gamma P}{\rho}}=\sqrt{\frac{\gamma R T}{M}}
$$

Speed of sound in gas, provided tempera ture remains constant.
O Effect of humidity : With increase in hu midity, density of air decreases

$$
v=\sqrt{\frac{\gamma P}{\rho}}
$$

\square Vibrations in a stretched stretched string of length L fixed at both ends.
O Fundamental frequency

$$
v_{1}=\frac{v}{\lambda_{1}}=\frac{v}{2 L}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}
$$

O For the nth mode, $\lambda_{n}=2 L / n$
Frequency of $n^{\text {th }}$ mode
$v_{n}=\frac{v}{\lambda_{n}}=\frac{n v}{2 L}=n v_{1}=\frac{n}{32 L} \sqrt{\frac{T}{\mu}}$ where $n=$
1,2,3...

$$
v_{p}=\frac{p}{2 L} \sqrt{\frac{T}{\mu}}
$$

where $\mathrm{p}=$ number of loops.
\square Vibrations of a closed origan piple
O For $n^{\text {th }}$ mode, $\lambda_{n}=\frac{4 L}{(2 n-1)}$
\square Frequency, $v_{1}=\frac{v}{\lambda_{n}}=\frac{v(2 n-1)}{4 L}=(2 n-1) v_{1}$

$$
v_{1}=\frac{v}{\lambda_{1}}=\frac{v}{4 L}
$$

\square Due to the end correction the fundamental frequency of a closed organ pipe is given by

$$
v_{C}=\frac{v}{4[L+e]}=\frac{v}{4[L+0.6 r]}
$$

\square Due to the end correction, the fundamental frequency of an open pipe is given by

$$
v_{O}=\frac{v}{2[L+2 e]}=\frac{v}{2[L+1.2 r]}
$$

\square Speed of sound in air at room temprature using resonance tube is given by

$$
v=2 v\left(L_{2}-L_{1}\right)
$$

\square Beat frequency $=$ no. of beats $/ \mathrm{sec}=$ $\left(v_{1}-v_{2}\right)=$ difference in frequencies.
\square Tuning fork is a source of sound of single frequency and frequency of a tuning fork of arm length L and thickness d in the direction of vibration is given by
$v=\left[\frac{d}{L^{2}}\right] v=\frac{d}{L^{2}} \sqrt{\frac{Y}{\rho}} \quad\left[\right.$ since $\left.v=\sqrt{\frac{Y}{\rho}}\right]$
\square According to Doppler's effect the apparent frequency heard by the observer is given by

$$
v^{\prime}=v\left[\frac{v \pm v_{0}}{v+v_{s}}\right]
$$

where v_{s}, v_{o} and v are the speed of source, when, observer and sound relative to air.
The upper sign on v_{o} (or v_{o}) is used when source (observer) moves towards the observer (source) while lower sign is used when it moves away.If the wind blow with speed v_{w} in the direction
of sound, v is replaced by $v+v_{w}$ in the above equation. If the wind blow with speed v_{w} in a direction opposite to that of sound, v is replaced by $v-v_{w}$ in the above equation.
\square A practical and small unit of loudness of sound is decibel (dB). 1 decibel =1/10 bel.
\square In decibe l the loudness of a sound of intensity
I is given by $L=10 \log _{10}\left(\frac{I}{I_{C}}\right)$.

